[-] Show simple item record

dc.contributor.advisorJacoby, William A.eng
dc.contributor.authorHahn, John J.eng
dc.date.issued2006eng
dc.date.submitted2006 Falleng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (viewed on August 1, 2007)eng
dc.descriptionVita.eng
dc.descriptionThesis (Ph. D.) University of Missouri-Columbia 2006.eng
dc.description.abstractBiomass energy encompasses a broad category of energy derived from plants and animals as well as the residual materials from each. Hydrogen gas is an effective energy carrier which burns cleanly producing water as the only product. Hydrogen produced from a renewable source such as biomass provides a domestically available, CO2 neutral, non-polluting form of energy. The goal of the work presented in this thesis was to develop two different methods to produce hydrogen gas using biomass as a renewable energy source. The first method was to produce hydrogen using photosynthetic algae. C. reinhardtii has been shown to produce hydrogen using light as an energy source. The objective of this work was to increase hydrogen production by a) manipulating process variables such as cell concentration, light intensity, and reactor design and b) immobilizing the algal cells to increase photosynthetic efficiency and address production limitations. The second method of hydrogen production explored was gasification of biomass using supercritical water (SCW). A continuous SCW reactor was constructed to increase capacity and understand the optimum conditions necessary to gasify model compounds. Increasing the capacity of SCW reactors and understanding how basic components of biomass react may lead to further development of this technology.eng
dc.description.bibrefIncludes bibliographical references.eng
dc.identifier.merlinb59266570eng
dc.identifier.oclc162101823eng
dc.identifier.urihttps://doi.org/10.32469/10355/4387eng
dc.identifier.urihttps://hdl.handle.net/10355/4387
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. Copyright held by author.
dc.subject.lcshBiomass energyeng
dc.subject.lcshHydrogeneng
dc.titleHydrogen production from biomasseng
dc.typeThesiseng
thesis.degree.disciplineChemical engineering (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record