[-] Show simple item record

dc.contributor.advisorMcIntosh, Mark A.eng
dc.contributor.authorFurrer, Jason L., 1976-eng
dc.date.issued2006eng
dc.date.submitted2006 Falleng
dc.description"December 2006"eng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionVita.eng
dc.descriptionThesis (Ph. D.) University of Missouri-Columbia 2006.eng
dc.description.abstractFerric iron, critical for the metabolic functions of many microorganisms, is generally insoluble at neutral pH or quickly complexed by host iron storage proteins. To acquire necessary ferric iron against harsh competition in the environment, iron-starved Escherichia coli synthesize, excrete and retrieve an iron-scavenging siderophore molecule termed enterobactin. Despite extensive characterization of the enterobactin system, the export machinery allowing enterobactin secretion to the extracellular environment has only recently been identified. E.coli membrane protein P43 (entS) in the enterobactin gene cluster encodes a Major Facilitator Superfamily (MFS) exporter. A P43 null mutant was unable to efficiently secrete enterobactin to the supernate, but did secrete elevated levels of enterobactin breakdown products as analyzed by TLC, HPLC, and cross-feeding assays. To further evaluate P43 function in enterobactin transport, inverted membrane vesicles were created using French press and incorporated with an iron-binding fluorescent dye, calcein-AM (CA). Differences in siderophore transport were observed between wild-type and the P43-mutant by monitoring CA fluorescence restoration following iron quenching and the addition of enterobactin. Using specific energy poisons in conjunction with this vesicle system, it was determined that proton motive force energy is utilized for this transport. Additional results demonstrate that siderophore transport from the periplasm to the external environment may be due to contributions from several other identified E.coli components, such as the multi-drug export system comprised of the outer membrane protein TolC and the translocase AcrAB. These data all demonstrate P43 provides a critical activity for the E.coli enterobactin secretion machinery and establish a mechanism for cellular release of siderophore.eng
dc.description.bibrefIncludes bibliographical references.eng
dc.identifier.merlinb59291643eng
dc.identifier.oclc163599331eng
dc.identifier.oclc163599331eng
dc.identifier.urihttps://doi.org/10.32469/10355/4392eng
dc.identifier.urihttps://hdl.handle.net/10355/4392
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. Copyright held by author.
dc.subject.meshIons -- metabolismeng
dc.subject.meshEscherichia coli -- metabolismeng
dc.subject.meshEnterobactin -- metabolismeng
dc.subject.meshEscherichia coli Proteins -- metabolismeng
dc.subject.meshBacterial Outer Membrane Proteins -- metabolismeng
dc.titleEnterobactin export in escherichia coli via P43 (ents) and associated componentseng
dc.typeThesiseng
thesis.degree.disciplineMicrobiology (Medicine) (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record