Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Theory of photo-induced ferro-magnetism in dilute magnetic semiconductors

    Mishra, Subodha
    View/Open
    [PDF] public.pdf (2.725Kb)
    [PDF] short.pdf (14.45Kb)
    [PDF] research.pdf (654.5Kb)
    Date
    2006
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    This thesis is a theoretical study of photo-induced ferro-magnetism in dilute magnetic semiconductors. When light is incident on these systems, electrons and holes are created across the band gap. These particles interact with the impurity magnetic moments and mediate ferro-magnetism when temperature is lowered. This is a situation similar to the famous Rabi problem of a two state system coupled to time-dependent oscillating electric field. Ours is a multi-state system with electrons and holes coupled to an oscillating electric field. This is a generalization of the Rabi problem which shows also a phase transition from para to ferromagnetic state. We first study some model one and two state systems. We show by performing appropriate unitary transformations, it is possible to eliminate the time from the time-dependent Hamiltonians and get the eigen energies. Since our system of electrons and holes in contact with the photon bath is in a steady state, we calculate the free energy of the system. We study the problem of phase transition in two different ways, one by constructing Bogoliubov-Valatin quasi particles and the other by BCS wave function approach as in the low-temperature superconducting phenomenon. This also establishes that BCS and BV approaches are equivalent mean-led methods. We calculate magnetization of the system in a self-consistent mean-field way. The magnetization and thereby the critical temperature is dependent on the photon energy incident on the system. By increasing the light coupling to the particles the transition temperature increases. Also by increasing the frequency of the light, the transition temperature is increased. Since more and more of the electrons and holes are created, these carriers mediate more with the magnetic moments and flip their moments into the ferro-magnetic state. It is also found that even when light energy is below the band-gap there is still magnetization and a ferro-magnetic state is still possible. It is interesting to find a linear dependence of critical temperature Tc on the coupling J².
    URI
    https://hdl.handle.net/10355/4413
    https://doi.org/10.32469/10355/4413
    Degree
    Ph. D.
    Thesis Department
    Physics and astronomy (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. Copyright held by author.
    Collections
    • 2006 MU dissertations - Freely available online
    • Physics and Astronomy electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems