Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Physical mechanisms of cell rearrangements: from tissue liquidity to artificial organ structures

    Jakab, Karoly Robert, 1974-
    View/Open
    [PDF] public.pdf (44.58Kb)
    [PDF] short.pdf (42.29Kb)
    [PDF] research.pdf (2.629Mb)
    CardiacSheetContraction.avi (22.94Mb)
    [Video] Gel.MOV (14.14Mb)
    [Video] Ring.MOV (13.39Mb)
    Date
    2006
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    This research presents a study of biological self-assembly in which we create 3D living functional tissue structures by exploiting the self organizing capacity of cells and tissues. Tissues composed of adhesive and motile cells mimic the behavior of viscoelastic liquids on both global and local scales. We exploited the concept of tissue liquidity to engineer tissue structures of relevant geometries encountered in the living organism. Embedding model tissue fragments in the form of spherical cell aggregates into biocompatible hydrogels, we demonstrated that by optimizing the cell-cell and cell-gel interactions, upon fusion long lived tissue structures emerge. We developed a rapid prototyping technique, "bioprinting", and automated devices capable to produce standardized "bioink" particles in the form of cell aggregates. The tissues created with our bioprinter fused into biologically relevant geometries and showed functional characteristics. Our efforts represent an important step toward building complex organ modules via biological self-assembly.
    URI
    https://hdl.handle.net/10355/4426
    https://doi.org/10.32469/10355/4426
    Degree
    Ph. D.
    Thesis Department
    Physics (MU)
    Collections
    • 2006 MU dissertations - Freely available online
    • Physics and Astronomy electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems