## Semi-parametric regression analysis of interval-censored failure time data

Semi-parametric regression analysis of interval-censored failure time data

##### Abstract

By interval-censored data, we mean that the failure time of interest is known only to lie within an interval instead of being observed exactly. Many clinical trials and longitudinal studies may generate interval-censored data. One common example occurs in medical or health studies that entail periodic follow-ups. An important special case of interval-censored data is the so called current status data when each subject is observed only once for the status of the occurrence of the event of interest. That is, instead of observing the survival endpoint directly, we only know the observation time and whether or not the event of interest has occurred at that time. Such data may occur in many fields, for example, cross-sectional studies and tumorigenicity experiments. Sometimes we also refer current status data to as case I interval-censored data and the general case as case II interval-censored data. In the following, for simplicity, we will refer current status data and interval-censored data to case I and case II interval-censored data, respectively. The statistical analysis of both case I and case II interval-censored failure time data has recently attracted a great deal of attention and especially, many procedures have been proposed for their regression analysis under various models. However, due to the strict restrictions of existing regression analysis procedures and practical demands, new methodologies for regression analysis need to be developed. For regression analysis of interval-censored data, many approaches have been proposed and for most of them, the inference is carried out based on the asymptotic normality. It's well known that the symmetric property implied by the normal distribution may not be appropriate sometimes and could underestimate the variance of estimated parameters. In the first part of this dissertation, we adopt the linear transformation models for regression analysis of interval-censored data and propose an empirical likelihood-based procedure to address the underestimating problem from

##### Degree

Ph.D.