Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Applications of the fourier transform to convex geometry

    Yaskin, Vladyslav, 1974-
    View/Open
    [PDF] public.pdf (23.68Kb)
    [PDF] short.pdf (24.56Kb)
    [PDF] research.pdf (580.5Kb)
    Date
    2006
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    The thesis is devoted to the study of various problems arising from Convex Geometry and Geometric Functional Analysis using tools of Fourier Analysis. In chapters two through four we consider the Busemann-Petty problem and its different modifications and generalizations. We solve the Busemann-Petty problem in hyperbolic and spherical spaces, and the lower dimensional Busemann-Petty problem in the hyperbolic space. In the Euclidean space we modify the assumptions of the original Busemann-Petty problem to guarantee the affirmative answer in all dimensions. In chapter five we introduce the notion of embedding of a normed space in L[0], investigate the geometry of such spaces and prove results confirming the place of L[0] in the scale of L [subscript p] spaces. Chapter six is concerned with the study L [subscript p]-centroid bodies associated to symmetric convex bodies and generalization of some known results of Lutwak and Grinberg, Zhang to the case [minus] 1 [less than] p [less than] 1. In chapter seven we discuss Khinchin type inequalities and the slicing problem. We obtain a version of such inequalities for p [greater than] [minus] 2 and as a consequence we prove the slicing problem for the unit balls of spaces that embed in L[subscript] p, p [greater than] [minus] 2.
    URI
    https://doi.org/10.32469/10355/4464
    https://hdl.handle.net/10355/4464
    Degree
    Ph. D.
    Thesis Department
    Mathematics (MU)
    Rights
    OpenAccess.
    Collections
    • 2006 MU dissertations - Freely available online
    • Mathematics electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems