[-] Show simple item record

dc.contributor.advisorPetris, Michael J.eng
dc.contributor.authorZhu, Sha 1984-eng
dc.date.issued2013eng
dc.date.submitted2013 Falleng
dc.description.abstract[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Copper is an essential trace metal in all organisms. In humans, copper plays structural and catalytic roles for numerous enzymes and is required for cellular respiration, connective tissue development, pigment formation, iron absorption and mobilization, integrity of the central nervous and immune systems. However, copper can also be toxic when present in excessive amounts, owing to its ability to facilitate reactive oxygen species (ROS) production. Because of the vital yet potentially toxic roles of copper, organisms have evolved delicate homeostatic control of copper uptake, intracellular distribution and export. Cellular copper homeostasis is maintained by several key regulators including: Copper transporter 1 (CTR1) and copper efflux transporters (ATP7A and ATP7B). Mutations in ATP7A or ATP7B disrupt the homeostatic copper balance, leading to Menkes disease (systemic copper deficiency) or Wilson disease (copper overload). ATP7A controls the cellular export of copper and the function of ATP7A is largely regulated by its subcellular localization. To regulate copper homeostasis, ATP7A cycles between the trans-Golgi network (TGN) and the plasma membrane constitutively or in a copper-dependent manner. A single endocytic di-leucine motif in the cytoplasmic tail of ATP7A was previously shown to regulate ATP7A internalization. Other than the maintenance of copper homeostasis, there are emerging studies demonstrating critical roles of ATP7A in cancer drug resistance and cancer progression. The platinum-based chemotherapy drug cisplatin is widely used to treat cancer. However, clinical use of cisplatin is limited by either severe side effects or acquired resistance. Copper transport pathways are proposed to be responsible in part for tumor resistance to cisplatin. In vitro observations suggested that high levels of ATP7A mediate vesicular sequestration of cisplatin and contribute to drug resistance. Furthermore, increased ATP7A expression is associated with clinical resistance to cisplatin chemotherapy and poor prognoeng
dc.description.bibrefIncludes bibliographical references (pages 171-193).eng
dc.format.extent1 online resource (xv, 194 pages) : illustrations (some color)eng
dc.identifier.oclc899242305eng
dc.identifier.urihttps://hdl.handle.net/10355/44697
dc.identifier.urihttps://doi.org/10.32469/10355/44697eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsAccess is limited to the campuses of the University of Missouri.eng
dc.titleElucidating the roles of the ATP7A copper transporter in cultured cells, tumor growth and metastasiseng
dc.typeThesiseng
thesis.degree.disciplineBiochemistry (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record