Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2014 Dissertations (UMKC)
    • 2014 UMKC Dissertations - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2014 Dissertations (UMKC)
    • 2014 UMKC Dissertations - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Determining the differential roles of the dock family of GEFs in drosophila development

    Biersmith, Bridget H.
    View/Open
    [PDF] Determining the differential roles of the dock family of GEFs in drosophila development (4.517Mb)
    Date
    2015-05-19
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    The evolutionarily conserved Dock proteins function as unconventional guanine nucleotide exchange factors (GEFs). Upon binding to ELMO (Engulfment and cell motility) proteins, Dock-ELMO complexes activate the Rho family of small GTPases to mediate a diverse array of biological processes, including cell motility, apoptotic cell clearance, and axon guidance. Overlapping expression patterns and functional redundancy among the eleven vertebrate Dock family members, which are subdivided into four families (Dock-A, B, C, and D), complicate genetic analysis. Drosophila melanogaster is an excellent genetic model organism to understand Dock protein function as its genome encodes one ortholog per subfamily: Myoblast city (Mbc; Dock- A) and Sponge (Spg; Dock-B). The target GTPase of the Dock-A subfamily is Rac, which modulates actin dynamics. However, the in vivo GTPase downstream of the Dock- B subfamily remains unclear. Herein we show that the roles of Spg and Mbc are not redundant in the Drosophila somatic muscle, central nervous system (CNS), or the dorsal vessel (dv). Moreover, we confirm the in vivo role of Mbc upstream of Rac and provide evidence that Spg functions in concert with Rap1 to regulate aspects of adhesion. Together these data show that Mbc and Spg can have differential downstream GTPase targets. Our findings predict that the ability to regulate downstream GTPases is dependent on cellular context and allows for the fine-tuning of actin cytoskeletal or cell adhesion events in biological processes that undergo cell morphogenesis.
    Table of Contents
    Introduction -- The dock protein sponge binds elmo and functions in drosophila embryonic development -- Differential roles of the unconventional dock family members myoblast city and sponge in drosophila development -- Material and methods -- Discussion
    URI
    https://hdl.handle.net/10355/45540
    Degree
    Ph.D.
    Thesis Department
    Cell Biology and Biophysics (UMKC)
     
    Molecular Biology and Biochemistry (UMKC)
     
    Collections
    • 2014 UMKC Dissertations - Freely Available Online
    • Molecular Biology and Biochemistry Electronic Theses and Dissertations (UMKC)
    • Cell Biology and Biophysics Electronic Theses and Dissertations (UMKC)

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems