Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2014 Dissertations (UMKC)
    • 2014 UMKC Dissertations - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2014 Dissertations (UMKC)
    • 2014 UMKC Dissertations - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Analyzing the effects of Cis-elements and trans-factors on the stability of the Gal1 mRNP

    Pirani, Karim
    View/Open
    [PDF] Analyzing the effects of Cis-elements and trans-factors on the stability of the Gal1 mRNP (3.249Mb)
    Date
    2014
    Metadata
    [+] Show full item record
    Abstract
    The highly dynamic and nonrandom spatial organization of the eukaryotic nucleus plays an important role in the regulation of gene expression. For example, in S. cerevisiae, several conditionally expressed genes relocate to the nuclear periphery upon activation. Moreover, these genes can be retained at the nuclear periphery for a considerable time after transcriptional shutoff. Sequence specific DNA binding proteins, transcription, chromatin remodeling, and mRNP quality control factors have all been implicated in perinuclear gene repositioning, but their relative contributions to the events of gene recruitment, capture and retention at the periphery remain unresolved. Sus1 is a conserved eukaryotic protein involved in transcription, mRNA export and perinuclear gene repositioning. Here, we show that the functions of Sus1p in perinuclear repositioning of GAL genes and its chromatin-linked functions can be genetically uncoupled, and that the role of Sus1p in the retention of mRNA in gene-proximal foci is chromatin-independent. Histone variant H2A.Z, likewise has been suggested to play a role in the post-transcriptional association of the yeast genes with the nuclear periphery. Our findings indicate that the loss of H2A.Z doesn’t alter gene-proximal mRNA retention, but has a differential effect on perinuclear repositioning of GAL genes. H2A.Z affects recruitment of GAL1 promoter-driven genes to the nuclear periphery in a 3’UTR-dependent manner, but its effect on posttranscriptional retention of GAL1 genes at the nuclear periphery is locus specific. Our previous analysis has also shown that the retention of RNA at the site of transcription is dependent on 3’end of the Gal1. Our results indicate that the absence of AU-rich element (ARE) sequence in Gal1 3’UTR may be one of the factor leading to Gal1 mRNP formation at the transcription site. Moreover, our data shows that by introducing the ARE sequence (TATTTAT), between the two cleavage sites of Gal1 3’UTR, it not only reduces the number of cells that for Gal1 mRNP but also abolishes the synthesis of extended transcript at Gal1 locus.
    Table of Contents
    Introduction -- Post-transcriptional perinuclear retention of activated genes in s. cerevisiae: chromatin-independent effects of SUS1 and position dependent effects of H2A.Z -- Introduction of AU-rich element (ARE) in the 3'UTR of Gal1, releases mRNA from the site of transcription and also ceases the synthesis of elongated transcripts -- Conclusions and future directions
    URI
    https://hdl.handle.net/10355/45612
    Degree
    Ph.D.
    Thesis Department
    Molecular Biology and Biochemistry (UMKC)
    Collections
    • Cell Biology and Biophysics Electronic Theses and Dissertations (UMKC)
    • 2014 UMKC Dissertations - Freely Available Online
    • Molecular Biology and Biochemistry Electronic Theses and Dissertations (UMKC)

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems