Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Theses (UMKC)
    • 2014 Theses (UMKC)
    • 2014 UMKC Theses - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Theses (UMKC)
    • 2014 Theses (UMKC)
    • 2014 UMKC Theses - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Exploiting the ability of Self Organizing Networks for inter-cell interference coordination for emergency communications in cellular networks

    Kesanakurthi, Siva Sai Karthik
    View/Open
    [PDF] Exploiting the ability of Self Organizing Networks for inter-cell interference coordination for emergency communications in cellular networks  (2.262Mb)
    Date
    2014
    Metadata
    [+] Show full item record
    Abstract
    In the current scenario, radio planning of wireless cellular networks and analysis of radio performance should be agile because it is expected that in the near future we will be reaching to the point where there will be as many mobile devices as people in the world. So, there should be a rapid revolution in technology which can aid in the management of resources and maximization of throughput to satisfy users effectively. LTE and LTE-Advanced is designed to meet high bit rate service requirements; however, the initial challenge of the wireless channel, such as limited spectrum, leads to frequency reuse but also irrevocable interference. This thesis gives a holistic conspectus of interference coordination in LTE cellular systems utilizing the ability of Self Organizing Networks (SON). LTE uses a universal frequency reuse concept and the only interference observed in LTE is inter-cell interference. In a network where users are randomly distributed over three cells, it manages resources between the base stations by restricting some resource blocks for Cell Edge Users (CEU) of the neighboring cell and other resource blocks for Cell Center Users (CCU). This is done in a semi-static approach by taking into account the location of the user and varying channel conditions. Cell edge users and cell center users are distinguished based upon the SINR level. The management of the resources are regulated as per the user requirements and coordinated by the neighboring cells. The results have been simulated in two different ambiances viz., normal traffic and the emergency condition to show its performance in exigency. The throughput of the CCUs and CEUs in normal traffic has been compared. Also, the approach and results are shown to be highly reliable.
    Table of Contents
    Introduction -- Background -- Our work -- MATLAB code implementation -- Results and analysis -- Conclusion and future scope
    URI
    https://hdl.handle.net/10355/45625
    Degree
    M.S.
    Thesis Department
    Electrical Engineering (UMKC)
    Collections
    • 2014 UMKC Theses - Freely Available Online
    • Computer Science and Electrical Engineering Electronic Theses and Dissertations (UMKC)

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems