[-] Show simple item record

dc.contributor.advisorKluever, Craig A. (Craig Allan)eng
dc.contributor.authorWilliams, Ryaneng
dc.date.issued2006eng
dc.date.submitted2006 Springeng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file viewed on (February 23, 2007)eng
dc.descriptionIncludes bibliographical references.eng
dc.descriptionThesis (M.S.) University of Missouri-Columbia 2006.eng
dc.descriptionDissertations, Academic -- University of Missouri--Columbia -- Mechanical and aerospace engineering.eng
dc.description.abstractIt is desired to find a trajectory for a spacecraft that will capture into an orbit about Jupiter and then subsequently capture into an orbit about each of the Galilean moons. The two main variables are the mass ratio, final mass to initial mass, and the trip time. The work was done using numerical estimation techniques in order to find the mass and trip time in using simplified analysis which is computationally fast and efficient. The transfer will be broken into three main segments: capturing into the first moon, capturing into and escaping from the moons, and transferring between the moons. Also a new steering law that increases the radius of perigee is developed to keep the spacecraft from crashing into the moons in certain situations. Once all of the individual segments have been completed the complete Galilean moon tour will be computed. It was found that using a 10 kW engine for a 1000 kg spacecraft gives a final mass of 420 kg and takes 1.62 yrs. A much larger spacecraft with an initial mass of 30,000 kg and a 100 kW engine gives a final mass of 19,861 kg and takes 10.69 yrs.eng
dc.identifier.merlinb57892714eng
dc.identifier.oclc84915115eng
dc.identifier.urihttps://hdl.handle.net/10355/4563
dc.identifier.urihttps://doi.org/10.32469/10355/4563eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.subject.lcshGalilean satelliteseng
dc.subject.lcshTrajectory optimizationeng
dc.subject.lcshPayloads (Aerospace engineering)eng
dc.subject.lcshSpace flight to Jupitereng
dc.subject.lcshSpace shipseng
dc.titleGalilean moon tour using simplified trajectory computational techniqueseng
dc.typeThesiseng
thesis.degree.disciplineMechanical and aerospace engineering (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelMasterseng
thesis.degree.nameM.S.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record