[-] Show simple item record

dc.contributor.advisorPires, J. Chriseng
dc.contributor.authorMayfield-Jones, Dustineng
dc.date.issued2014eng
dc.date.submitted2014 Springeng
dc.description.abstractThe mapping and comparison of biological networks allows for analysis to understand forces of evolution. Here, we synthesize information about polyploidy, or whole genome duplication, and its effects on network rewiring. Network changes may have lead to the diversity and survival of some lineages of life, and by understanding network evolution, we may discover patterns that explain how organisms evolve. Specifically, we focus on the consequences of polyploidy on flowering time. Our work aids those studying different aspects of polyploidy to see a bigger picture of how it contributes to evolutionary change and important features that may be involved in cancer. Future studies of biological networks will help improve models of disease and biological processes to make better crops for food, fuel, fiber, and pharmaceuticals.eng
dc.identifier.urihttps://hdl.handle.net/10355/45825
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.sourceSubmitted by University of Missouri--Columbia Graduate School.eng
dc.titleOccurrence and implicatons of biological network evolution following polyploidyeng
dc.typeThesiseng
thesis.degree.disciplineBiological sciences (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelMasterseng
thesis.degree.nameM.A.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record