[-] Show simple item record

dc.contributor.advisorFales, Rogereng
dc.contributor.authorMuller, Mattheweng
dc.date.issued2006eng
dc.date.submitted2006 Springeng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (viewed on April 17, 2009)eng
dc.descriptionIncludes bibliographical references.eng
dc.descriptionThesis (M.S.) University of Missouri-Columbia 2006.eng
dc.descriptionDissertations, Academic -- University of Missouri--Columbia -- Mechanical and aerospace engineering.eng
dc.description.abstractThis research explores valve design, dynamic modeling, and techniques to achieve flow control for a forced-feedback metering poppet valve system. In particular, nonlinear and linear models of a forced feedback configuration are developed and tuned through the use of root locus techniques. Typical steady state conditions as well as extreme high and low pressure drops are simulated in attempts to uncover instabilities and other possible undesirable performance characteristics of the valve. It is shown that by using a variable inlet orifice to the control volume as opposed to a constant orifice, desired system bandwidth and stability can be achieved. Open loop valve designs are then simulated with several electronic control schemes which incorporate feedback of load pressure and in some cases valve flow. An observer design is investigated as a means of providing flow feedback without additional sensor costs. Electronic flow control schemes are compared to standard mechanical pressure compensation and finally a robust analysis is provided for a chosen electronic control scheme.eng
dc.identifier.merlinb66787336eng
dc.identifier.oclc318650769eng
dc.identifier.urihttps://hdl.handle.net/10355/4644
dc.identifier.urihttps://doi.org/10.32469/10355/4644eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.subject.lcshValves -- Designeng
dc.subject.lcshValves -- Mathematical modelseng
dc.subject.lcshFeedback control systemseng
dc.titleModeling, design and control of forced-feedback metering poppet valve systemeng
dc.typeThesiseng
thesis.degree.disciplineMechanical and aerospace engineering (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelMasterseng
thesis.degree.nameM.S.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record