Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2015 Dissertations (UMKC)
    • 2015 UMKC Dissertations - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2015 Dissertations (UMKC)
    • 2015 UMKC Dissertations - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Measurement And Improvement of Quality-of-Experience For Online Video Streaming Services

    Juluri, Parikshit
    View/Open
    [PDF] JuluriMeaImpQua.pdf (948.3Kb)
    Date
    2015
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    HTTP based online video streaming services have been consistently dominating the online traffic for the past few years. Measuring and improving the performance of these services is an important challenge. Traditional Quality-of-Service (QoS) metrics such as packet loss, jitter and delay which were used for networked services are not easily understood by the users. Instead, Quality-of-Experience (QoE) metrics which capture the overall satisfaction are more suitable for measuring the quality as perceived by the users. However, these QoE metrics have not yet been standardized and their measurement and improvement poses unique challenges. In this work we first present a comprehensive survey of the different set of QoE metrics and the measurement methodologies suitable for HTTP based online video streaming services. We then present our active QoE measurement tool Pytomo that measures the QoE of YouTube videos. A case study on the measurement of QoE of YouTube videos when accessed by residential users from three different Internet Service Providers (ISP) in a metropolitan area is discussed. This is the first work that has collected QoE data from actual residential users using active measurements for YouTube videos. Based on these measurements we were able to study and compare the QoE of YouTube videos across multiple ISPs. We also were able to correlate the QoE observed with the server clusters used for the different users. Based on this correlation we were able to identify the server clusters that were experiencing diminished QoE. DynamicAdaptive Streaming overHTTP (DASH) is an HTTP based video streaming that enables the video players to adapt the video quality based on the network conditions. We next present a rate adaptation algorithm that improves the QoE of DASH video streaming services that selects the most optimum video quality. With DASH the video server hosts multiple representation of the same video and each representation is divided into small segments of constant playback duration. The DASH player downloads the appropriate representation based on the network conditions, thus, adapting the video quality to match the conditions. Currently deployed Adaptive Bitrate (ABR) algorithms use throughput and buffer occupancy to predict segment fetch times. These algorithms assume that the segments are of equal size. However, due to the encoding schemes employed this assumption does not hold. In order to overcome these limitations, we propose a novel Segment Aware Rate Adaptation algorithm (SARA) that leverages the knowledge of the segment size variations to improve the prediction of segment fetch times. Using an emulated player in a geographically distributed virtual network setup, we compare the performance of SARA with existing ABR algorithms. We demonstrate that SARA helps to improve the QoE of the DASH video streaming with improved convergence time, better bitrate switching performance and better video quality. We also show that unlike the existing adaptation schemes, SARA provides a consistent QoE irrespective of the segment size distributions.
    Table of Contents
    Introduction -- Measurement of QoE for Online Video Streaming Services: A Literature Survey -- Pytomo: A Tool for measuring QoE of YouTube Videos -- Case Study: QoE across three Internet Service Providers in a Metropolitan Area -- Adaptive Bitrate Algorithms for DASH -- Segment Aware Rate Adaptation for DASH -- Performance Evaluation of SARA -- Conclusion and Future Research --Appendix A. Sample MPD File
    URI
    https://hdl.handle.net/10355/46696
    Degree
    Ph.D.
    Thesis Department
    Telecommunications and Computer Networking (UMKC)
     
    Electrical and Computer Engineering (UMKC)
     
    Collections
    • Computer Science and Electrical Engineering Electronic Theses and Dissertations (UMKC)
    • 2015 UMKC Dissertations - Freely Available Online

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems