[-] Show simple item record

dc.contributor.advisorGrant, Sheila Anneng
dc.contributor.authorEl-Dweik, Majed, 1966-eng
dc.date.issued2007eng
dc.date.submitted2007 Springeng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (viewed on March 23, 2009)eng
dc.descriptionVita.eng
dc.descriptionThesis (Ph.D.) University of Missouri-Columbia 2007.eng
dc.description.abstractAn implantable glucose biosensor encapsulated in erythrocytes, Red Blood Cells (RBC), will become a method for continuously measuring blood glucose concentration in diabetics. In 2005, the American Diabetes Association (ADA) reported that 20.8 million people have diabetes, making it the fifth leading cause of death by disease in the USA. This paper focuses on the preparation phase of the glucose sensor. Glucose Binding Protein (GBP) from E. coli was labeled with two fluorophores, Alexa Fluor 680 (AF680), and Alexa Fluor 750 (AF750). This sensor based on Fluorescence Resonance Energy Transfer (FRET). FRET is a distance sensitive technique between the above fluorophores. The initial energy transfer between AF680 and AF750 labeled on the GBP before glucose additions was determined. After glucose additions, the labeled GBP went through conformational change which caused distance between the labeled sites. This change in distance caused a change in the energy transfer. The labeled GBP became the glucose nanobiosensor. The labeled GBP nanobiosensors were encapsulated in erythrocytes, red blood cells (RBCs), by using the Hypo-Osmotic dialysis technique. The encapsulated RBCs responded well to different glucose concentrations ranging form 0-33.16mM. This range covers the normal blood glucose concentration, 4 - 9mM.eng
dc.description.bibrefIncludes bibliographical references.eng
dc.identifier.merlinb66668232eng
dc.identifier.oclc316804933eng
dc.identifier.urihttps://doi.org/10.32469/10355/4672eng
dc.identifier.urihttps://hdl.handle.net/10355/4672
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
dc.sourceSubmitted by University of Missouri--Columbia Graduate School.eng
dc.subject.lcshDiabeteseng
dc.subject.lcshGlucoseeng
dc.subject.lcshBiosensorseng
dc.subject.lcshErythrocyteseng
dc.titleOptical glucose nanobiosensor encapsulated in erythrocyteseng
dc.typeThesiseng
thesis.degree.disciplineBiological engineering (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record