A study of parametric excitation applied to a MEMS tuning fork gyroscope

MOspace/Manakin Repository

Breadcrumbs Navigation

A study of parametric excitation applied to a MEMS tuning fork gyroscope

Please use this identifier to cite or link to this item: http://hdl.handle.net/10355/4697

[+] show full item record


Title: A study of parametric excitation applied to a MEMS tuning fork gyroscope
Author: Lee, Yongsik, 1970-
Date: 2007
Publisher: University of Missouri--Columbia
Abstract: The current MEMS ( gyroscopes which normally use the electro static force to excite the comb drive are faced with the limitations such as low precision, coupling problem, and poor robustness. We propose to use parametric excitation to solve those problems. The advantage of the parametric excitation is that it can be externalized, thus, the fabrication process can also be simplified. A feasibility study of the parametric excitation using a two-pendulum model is presented. Governing equations are derived by Lagrange equation, and the results are simulated using MATLAB program. Two swing patterns, symmetric and anti-symmetric motion, are illustrated and investigated with different initial conditions. An experimental study of a tuning fork beam is presented. For non-contact motion analysis, an Eagle 3-D motion analysis digital camera system is employed. We discuss the practical problems such as limited shaker power, which is caused by open-loop excitation method. A governing equation including the damping effect by the lateral vibration of the tines is presented, and its analytical solution is compared with the experimental results. A good qualitative agreement is obtained. To clarify the softening nonlinearity of the tuning fork beam, the gravity effect is described for both vertical and inverted pendulum cases.
URI: http://hdl.handle.net/10355/4697
Other Identifiers: LeeY-072007-D8161

This item appears in the following Collection(s)

[+] show full item record