Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2015 Theses (MU)
    • 2015 MU theses - Access restricted to UM
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2015 Theses (MU)
    • 2015 MU theses - Access restricted to UM
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Applications of activated carbon to reduce disinfection byproducts in small drinking water systems

    Junker, Allyson Leigh
    View/Open
    [PDF] public.pdf (6.116Kb)
    [PDF] research.pdf (2.361Mb)
    [PDF] short.pdf (103.2Kb)
    Date
    2015
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] The addition of chlorine disinfectant to drinking water during the treatment process results in the formation of disinfection by-products (DBPs). The United States and several other nations regulate for DBPs in drinking water because studies have linked exposure to these compounds to increased incidence of cancers as well as birth and developmental defects. Incorporation of activated carbon(AC) into the drinking water treatment process may reduce the formation of DBPs through the adsorption of natural organic matter (NOM) precursors and formed DBPs. The goal of this research project is to investigate how AC can be better used by small-scale drinking water plants as a feasible option for reducing the DBPs formed in their systems, which would allow them to consistently achieve compliance with the Environmental Protection Agency's latest regulation Stage 2 D/DBP Rule. This research compared the factors of AC particle size, carbon source material, and concurrent coagulant addition in NOM sorption experiments. Although concurrent chemical addition and carbon source had no significant differences on AC performance, the performance of powdered activated carbon (PAC) was notably greater than granular activated carbon(GAC). Characterization of NOM in source water showed preferential adsorption of hydrophilic NOM compounds onto the AC. Finally, a pilot studied was designed to investigate the potential of granular activated carbon (GAC) to adsorb formed DBPs before entering the distribution system.
    URI
    https://hdl.handle.net/10355/47187
    Degree
    M.S.
    Thesis Department
    Civil and Environmental Engineering (MU)
    Rights
    Access is limited to the campuses of the University of Missouri.
    Collections
    • 2015 MU theses - Access restricted to UM
    • Civil and Environmental Engineering electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems