Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2007 Dissertations (MU)
    • 2007 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2007 Dissertations (MU)
    • 2007 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Molecular dynamics simulations of pressure shocks in liquid phase nitromethane

    McNatt, Michael David, 1972-
    View/Open
    [PDF] public.pdf (2.241Kb)
    [PDF] short.pdf (10.67Kb)
    [PDF] research.pdf (18.89Mb)
    Date
    2007
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    The dynamic energy transfer processes present in liquid nitromethane (NM) under pressure shock loading conditions have been investigated by nonequilibrium molecular dynamics methods using a previously developed, fully flexible NM force field (Sorescu, D. C.; Rice, B. M.; Thompson, D. L. J. Phys. Chem. B 2000, 104, 8406). Generally good qualitative agreement with the corresponding experimental values was found for sound speeds (C) as a function of temperature. This is true as well for the PVT Hugoniot data calculated for the shock compressed zones behind our simulated shock fronts. But from equipartition theory we found that T is not equilibrated behind these fronts within the maximum timeframe of our simulations ( [less than] 10 ps). The predicted C(T) are [approximately]13 - 30% higher than experiment (Lysne, P. C.; Hardesty, D. R. J. Chem. Phys. 1973, 59, 6512) and our predicted densities are consistently 4 - 10% lower than experiment (Winey, J. M.; Duvall, G. E.; Knudson, M. D.; Gupta, Y. M. J. Chem. Phys. 2000, 113, 7492). Accurate Hugoniot pressures are predicted at all three initial temperatures (255, 300, 350 K) studied which span the experimental ambient pressure temperature range of liquid NM ([approximately]244 - 373 K).
    URI
    https://doi.org/10.32469/10355/4724
    https://hdl.handle.net/10355/4724
    Degree
    Ph. D.
    Thesis Department
    Chemistry (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2007 MU dissertations - Freely available online
    • Chemistry electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems