[-] Show simple item record

dc.contributor.advisorGillis, Kevin D.eng
dc.contributor.authorShin, Won-Chul, 1973-eng
dc.date.issued2007eng
dc.date.submitted2007 Springeng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (viewed on March 24, 2009)eng
dc.descriptionVita.eng
dc.descriptionIncludes bibliographical references.eng
dc.descriptionThesis (Ph.D.) University of Missouri-Columbia 2007.eng
dc.descriptionDissertations, Academic -- University of Missouri--Columbia -- Biological engineering.eng
dc.description.abstractNeurons and neuroendocrine cells contain vesicles packed with hormones or neurotransmitters. Upon appropriate stimulation, a rise in intracellular Ca2+ concentration triggers the fusion of vesicles with the outer membrane of cells and release of vesicle contents into the extracellular space in a process called exocytosis. In this thesis, we developed three new nano- and micro- techniques to study exocytosis. 1. We used scanning ion conductance microscopy (SICM) to image changes in the surface membrane of adrenal chromaffin cells after stimulation of exocytosis. Punctate depressions were noted in clusters of two or more. Increases in membrane surface area, consistent with the fusion and collapse of one or more vesicles into the surface membrane, were observed 64% of the cells. 2. We used a microcontact printing method with PDMS stamps by "soft" lithography to pattern microislands of rat hippocampal neurons to form autapses. Neurons on microstamped microislands survived and grew neurites for more than 21 days and resembled microisland cultures formed by the traditional method of spraying collagen on agarose coated substrates. 3. Microfabricated devices were developed to electrochemically measure quantal catecholamine release from an array of individual cells. Here we report patterning of cellsized holes in [tilde operator] 15 m-thick films. These films are placed on transparent indium tin oxide electrodes to insulate the unused part of the electrode whereas the holes in the film both determine the location of the working electrode and serve as pockets for cell trapping. We found that this approach represents a simple and effective way to target cells to electrodes to record amperometric spikes.eng
dc.identifier.merlin.b66671358eng
dc.identifier.oclc316861666eng
dc.identifier.otherShinW-031609-D6333eng
dc.identifier.urihttp://hdl.handle.net/10355/4725eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcollectionUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.sourceSubmitted by University of Missouri--Columbia Graduate School.eng
dc.subject.lcshExocytosiseng
dc.subject.lcshConductometric analysiseng
dc.subject.lcshNeuronseng
dc.subject.lcshParaneuronseng
dc.titleNano- and micro-scale studies of exocytosiseng
dc.typeThesiseng
thesis.degree.disciplineBiological engineering (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record