[-] Show simple item record

dc.contributor.advisorGuha, Suchieng
dc.contributor.authorArif, Mohammad, 1974-eng
dc.date.issued2007eng
dc.date.submitted2007 Summereng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (viewed on November 21, 2007)eng
dc.descriptionVita.eng
dc.descriptionThesis (Ph. D.) University of Missouri-Columbia 2007.eng
dc.description.abstractBlue-emitting polyfluorenes (PFs) have emerged as especially attractive [pi] conjugated polymers (CP) due to their strong blue emission and excellent electronic properties and thus great prospects for device applications. This project entails detailed Raman scattering studies and charge transport properties of two side chain substituted PFs: Poly(2,7-[9,9'-bis(2-ethylhexyl)] fluorene) (PF2/6) and Poly(9,9-(di-n,n-octyl) fluorene) (PF8). Raman scattering techniques as a function of thermal cycling are used to monitor the changes in the backbone and side chain morphology of PF8. Theoretical modeling of the vibrational spectra of single chain oligomers in conjunction with the experimental results demonstrate the incompatibility of the [beta] phase, a low energy emitting chromophore, with the overall crystalline phase in PF8. Further, electroluminescence and photoluminescence measurements from PF-based light-emitting diodes (LEDs) are presented and discussed in terms of the crystalline phases and chain morphologies in the PFs. Charge carrier injection and transport properties of PF-based LEDs are presented using current-voltage (I-V) characteristic which is modeled by a space-charge-limited conduction (SCLC) for discrete and continuous traps. PF2/6 with a high level of molecular disorder is an exemplary system for the SCLC model with discrete single level shallow traps. Charge transport as a function of sample thickness uncovers the origin of these traps. Temperature dependence of I-V and dc conductivity measurements suggest thermal assisted variable-range hopping transport instead of band transport in these materials. Raman scattering studies of PF2/6-based LEDs with doping and in the presence of injected and photo-generated charge carriers show increasing backgrounds with asymmetric Briet-Wigner Fano (BWF) line shapes, indicating strong electronphonon interactions.eng
dc.description.bibrefIncludes bibliographical references.eng
dc.identifier.merlinb61465240eng
dc.identifier.oclc182518994eng
dc.identifier.urihttps://hdl.handle.net/10355/4773
dc.identifier.urihttps://doi.org/10.32469/10355/4773eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
dc.subject.lcshRaman effecteng
dc.subject.lcshOrganic semiconductorseng
dc.subject.lcshElectroluminescenceeng
dc.subject.lcshPhotoluminescenceeng
dc.titleRaman scattering studies and charge transport in polyfluoreneseng
dc.typeThesiseng
thesis.degree.disciplinePhysics and astronomy (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record