Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2007 Dissertations (MU)
    • 2007 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2007 Dissertations (MU)
    • 2007 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Multiscale modeling of biomolecular systems

    Janosi, Lorant, 1979-
    View/Open
    [PDF] public.pdf (1.782Kb)
    [PDF] short.pdf (7.467Kb)
    [PDF] research.pdf (5.132Mb)
    Date
    2007
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Studies of structure-function relationships in biomolecular systems require to follow nanometersize systems on time scales spanning from pico- to micro-seconds, while maintaining atomic scale spatial resolution in all-atom molecular dynamics (MD) simulations. In this work we propose new methods to investigate the following, intrinsically multiscale problems: (i) theoretical prediction of optical and spectral properties of pigment-protein complexes, (ii) reconstruction of potential of mean force and its corresponding diffusion coefficient from non-equilibrium molecular dynamics simulations, (iii) transport of potassium ion through the Gramicidin A channel and of glycerol through the GlpF channel, and (iv) prediction of the species-dependent oligomerization state of the light harvesting antenna complexes. The main novelty of these methods is that they rely only on the high resolution atomic structure of the biomolecular system. Therefore, they have not only explanatory, but predictive power as well.
    URI
    https://doi.org/10.32469/10355/4801
    https://hdl.handle.net/10355/4801
    Degree
    Ph. D.
    Thesis Department
    Physics (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2007 MU dissertations - Freely available online
    • Physics and Astronomy electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems