Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2014 Dissertations (MU)
    • 2014 MU dissertations - Access restricted to MU
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2014 Dissertations (MU)
    • 2014 MU dissertations - Access restricted to MU
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Bayesian analysis for detecting differentially expressed genes from RNA-seq data

    Cui, Shiqi
    View/Open
    [PDF] public.pdf (2.328Kb)
    [PDF] research.pdf (2.574Mb)
    [PDF] short.pdf (35.21Kb)
    Date
    2014
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] This dissertation introduces hmmSeq, a model-based hierarchical Bayesian technique for detecting differentially expressed genes from RNA-seq data. Our novel hmmSeq methodology uses hidden Markov models to account for potential co-expression of neighboring genes. In addition, hmmSeq employs an integrated approach to studies with technical or biological replicates, automatically adjusting for any extra-Poisson variability. Moreover, for cases when paired data are available, hmmSeq includes a paired structure between treatments that incorporates subject-specific effects. To perform parameter estimation for the hmmSeq model, we develop an efficient Markov chain Monte Carlo algorithm. Further, we develop a procedure for detection of differentially expressed genes that automatically controls false discovery rate. A simulation study shows that the hmmSeq methodology performs better than competitors in terms of receiver operating characteristic curves. Finally, the analyses of three publicly available RNA-Seq datasets demonstrate the power and flexibility of the hmmSeq methodology. This dissertation also introduces an empirical Bayesian approach to detect differentially expressed genes in time course RNA-seq experiments. The proposed Bayesian method identifies major variation in gene expression profile by Bayesian principal component regression. The expression data are normalized for each gene, and the high dimentionality of time course data is first reduced by principal component analysis. The proposed model assumes a mixture distribution of expression parameters for differentially and nondifferentially expressed genes, borrows strength by sharing same variance across multiple subjects for each single gene, as well as shares information across genes by assuming gene-wise probabilities of being differentially expressed from the common beta prior distribution.
    URI
    https://hdl.handle.net/10355/48204
    https://doi.org/10.32469/10355/48204
    Degree
    Ph. D.
    Thesis Department
    Statistics (MU)
    Rights
    Access is limited to the campus of the University of Missouri--Columbia.
    Collections
    • 2014 MU dissertations - Access restricted to MU
    • Statistics electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems