Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2007 Dissertations (MU)
    • 2007 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2007 Dissertations (MU)
    • 2007 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    A novel framework for protein structure prediction

    Bondugula, Rajkumar, 1980-
    View/Open
    [PDF] public.pdf (7.309Kb)
    [PDF] short.pdf (7.019Kb)
    [PDF] research.pdf (1.370Mb)
    Date
    2007
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Proteins are one of the most important molecules in the life processes. The structure of a protein is essential in understanding the function of a protein at the molecular level. Due to rapid progress in sequencing technologies, the gap between the proteins whose structure is known and the proteins whose structure needs to be characterized is rapidly increasing. To address this problem, we are developing a novel framework to computationally predict many aspects of proteins like secondary structure, solvent accessibility, contact map and finally, the tertiary structure itself. We have applied various computational techniques including the fuzzy k-nearest neighbor algorithm, the multi-dimensional scaling method, and the least-squares minimization, in the structure predictions. Our framework uses the evolutionary information more effectively than traditional template based methods, while it has a better potential to utilize the information in PDB than the other evolutionary information based methods. Our methods show better performance in prediction accuracy and computational time than many other tools.
    URI
    https://doi.org/10.32469/10355/4855
    https://hdl.handle.net/10355/4855
    Degree
    Ph. D.
    Thesis Department
    Computer science (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • Computer Science electronic theses and dissertations (MU)
    • 2007 MU dissertations - Freely available online

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems