[-] Show simple item record

dc.contributor.advisorKopeikin, Sergei M.eng
dc.contributor.authorKorobkov, Pavel, 1978-eng
dc.date.issued2007eng
dc.date.submitted2007 Summereng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (viewed on November 27, 2007)eng
dc.descriptionVita.eng
dc.descriptionThesis (Ph. D.) University of Missouri-Columbia 2007.eng
dc.description.abstractWe consider propagation of electromagnetic signals through the time-dependent gravitational field of an isolated astronomical system emitting gravitational waves. The system is assumed to possess multipole moments of arbitrary order. Working in the linear, weak-field approximation of general relativity, we obtain analytical expressions for light-ray trajectory and observable effects of bending of light, time delay, and gravitational rotation of the polarization plane. The relative positions of the source of light, the isolated system, and the observer are not restricted, which makes our formalism quite general and applicable for most practical situations. Asymptotic expressions for observable effects are obtained in two limiting cases of arrangement of light source, observer, and the source of gravitational waves: the gravitational-lens approximation and the approximation of plane gravitational waves. It is shown that in the gravitational-lens approximation the leading contributions to the effects due to multipole moments of arbitrary order fall off with the impact parameter as 1/d2 and 1/d3 for time delay and deflection of light respectively. Such, stronger than it could be a priori expected, dependance on impact parameter hinders observation of time-dependent effects in gravitational lensing. In the plane-gravitational-wave approximation the expressions for observable effects due to gravitational waves of arbitrary multipolarity are obtained in terms of the transverse-traceless (TT) part of the spacial components of the metric tensor.eng
dc.description.bibrefIncludes bibliographical references.eng
dc.identifier.merlinb6147552xeng
dc.identifier.oclc182562133eng
dc.identifier.urihttps://doi.org/10.32469/10355/4883eng
dc.identifier.urihttps://hdl.handle.net/10355/4883
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
dc.subject.lcshLight -- Wave-lengtheng
dc.subject.lcshGravitational waveseng
dc.titleGeneral relativistic theory of light propagation in the field of gravitational multipoleseng
dc.typeThesiseng
thesis.degree.disciplinePhysics and astronomy (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record