Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2007 Dissertations (MU)
    • 2007 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2007 Dissertations (MU)
    • 2007 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Optical stimulation of quantal exocytosis on transparent microchips

    Chen, Xiaohui, 1973-
    View/Open
    [PDF] public.pdf (1.838Kb)
    [PDF] short.pdf (73.98Kb)
    [PDF] research.pdf (4.142Mb)
    Date
    2007
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Photorelease of caged Ca²⁺ is a uniquely powerful tool to study the dynamics of Ca²⁺-triggered exocytosis from individual cells. Using photolithography and other microfabrication techniques, we have developed transparent microchip devices to enable photorelease of caged Ca²⁺ together with electrochemical detection of quantal catecholamine secretion from individual cells or cell arrays as a step towards developing high-throughput experimental devices. A 110 nm - thick transparent Indium-Tin-Oxide (ITO) film was sputter-deposited onto glass coverslips, which were then patterned into 24 cell-sized working electrodes (2̃0 [mu]m by 20 [mu]m). We loaded bovine chromaffin cells with acetoxymethyl (AM) ester derivatives of the Ca²⁺ cage NP-EGTA and Ca²⁺ indicator dye Fura-4F, then transferred these cells onto the working ITO electrodes for amperometric recordings. Upon flash photorelease of caged Ca²+С uniform rise of [Ca²⁺]i within the target cell leads to quantal release of oxidizable catecholamines measured amperometrically by the underlying ITO electrode. We observed a burst of amperometric spikes upon rapid elevation of [Ca²⁺]i and a "priming" effect of sub-stimulatory [Ca²⁺]i on the response of cells to subsequent [Ca²⁺]i elevation, similar to previous reports using different techniques. We conclude that UV photolysis of caged Ca²⁺ is a suitable stimulation technique for higher-throughput studies of Ca²⁺-dependent exocytosis on transparent electrochemical microelectrode arrays.
    URI
    https://hdl.handle.net/10355/4890
    https://doi.org/10.32469/10355/4890
    Degree
    Ph. D.
    Thesis Department
    Biological engineering (MU)
    Collections
    • 2007 MU dissertations - Freely available online
    • Biological Engineering electronic theses and dissertations - CAFNR (MU)
    • Biological Engineering electronic theses and dissertations - Engineering (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems