[-] Show simple item record

dc.contributor.advisorLiu, Mian, 1960-eng
dc.contributor.authorYe, Jiyangeng
dc.date.issued2015eng
dc.date.submitted2015 Springeng
dc.description.abstract[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Diffuse deformation within continents and over broad plate boundary zones deviates from the prediction of plate tectonics theory. Some of the deforming continents are now well delineated by space geodetic measurements, but the cause of such diffuse deformation remains poorly understood. My Ph.D. research focuses on two regions: 1) Fault evolution and Strain partitioning in Southern California: High-precision GPS measurements have enabled kinematic modeling of the present-day strain partitioning between these faults, but the causes of such strain partitioning and fault evolution remain uncertain. Using a three-dimensional viscoelasto-plastic finite element model, I have explored how the plate boundary fault system evolves to accommodate the relative plate motion in Southern California. My results show that, when the plate boundary faults are not optimally orientated to accommodate the relative plate motion, new faults will be initiated. In particular, the Big Bend of the San Andreas Fault, which is the main plate boundary fault, impedes the relative plate motion, thus forces the development of a system of secondary faults. 2) Active strain rates of crustal deformation in mainland China: In the past decades Chinese scientists and international teams have measured GPS velocities at more than a thousand sites in mainland China, allowing calculation of detailed spatial distribution of the crustal strain rates. Using the latest GPS data, I have calculated strain rates in different tectonic provinces in China and compared them with neotectonic data. I have also calculated strain rates using earthquakes and geological fault slip rates. The differences of strain rates derived from different data sets show the time-scale dependence of strain rates. Comparing GPS strain rates with seismic moment release patterns illustrates the limitations of using earthquake catalog for earthquake hazard analysis.eng
dc.identifier.urihttps://hdl.handle.net/10355/49036
dc.identifier.urihttps://doi.org/10.32469/10355/49036eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsAccess is limited to the campuses of the University of Missouri.eng
dc.titleFault evolution and strain partitioning within deforming continentseng
dc.typeThesiseng
thesis.degree.disciplineGeological sciences (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record