Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2015 Dissertations (MU)
    • 2015 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2015 Dissertations (MU)
    • 2015 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthorAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthorAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Structural and functional studies of proline catabolic enzymes and human aldehyde dehydrogenases

    Luo, Min
    View/Open
    [PDF] public.pdf (15.01Kb)
    [PDF] research.pdf (24.50Mb)
    [PDF] short.pdf (36.99Kb)
    Date
    2015
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Oxidation of amino acids, like proline catabolism, is a central part of energy metabolism. Proline is oxidized to glutamate by two enzymes: proline dehydrogenase (PRODH) and 1-pyrroline-5-carboxylate dehydrogenase (P5CDH). PRODH catalyzes the first reaction of proline to 1-pyrroline-5-carboxylate (P5C). P5C undergoes a non-enzymatic hydrolysis to glutamate semialdehyde (GSA), which is oxidized to glutamate by a NAD+- dependent enzyme P5CDH. PRODH and P5CDH are mono-functional enzymes in eukaryotes and Gram-positive bacteria; while in Gram-negative bacteria, the two enzymes are fused into one protein as two domains, known as proline utilization A (PutA). This dissertation work involved structural and functional studies of PRODH, P5CDH, PutA, and human aldehyde dehydrogenases (ALDHs). The results illuminated the substrate recognition for mono-functional PRODH and hot spot oligomerization mechanism for mono-functional P5CDH, also, demonstrated that diethylaminobenzaldehyde (DEAB) is a mechanism based inactivator for aldehyde dehydrogenase 7A1. Furthermore, the C-terminal domain found in PutAs, the only domain without any structural and functional information has been structurally and biochemically characterized.
    URI
    https://hdl.handle.net/10355/49103
    Degree
    Ph. D.
    Thesis Department
    Chemistry (MU)
    Rights
    OpenAccess
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • Chemistry electronic theses and dissertations (MU)
    • 2015 MU dissertations - Freely available online

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems