Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2007 Theses (MU)
    • 2007 MU theses - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2007 Theses (MU)
    • 2007 MU theses - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Application of hyperspectral remote sensing in detecting and mapping Sericea lespedeza in Missouri

    Zhou, Bo
    View/Open
    [PDF] public.pdf (2.223Kb)
    [PDF] short.pdf (10.51Kb)
    [PDF] research.pdf (3.571Mb)
    Date
    2007
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    When conservationists in Missouri realized that sericea lespedeza was taking its toll by threatening the healthy growth of economic vegetation, they decided to start controlling the invasion of this species. A major challenge encountered is to map the extent of its spatial spread. While satellite remote sensing and aerial photography have been available for many years, newer detection technologies such as hyperspectral sensors have made it possible to acquire large-scale laboratory-like spectra of sericea patches and surrounding natural grasses in the air. In this study, sericea was mapped using the Airborne Imaging Spectrometer for Application (AISA) sensor that records images at high spectral (9nm bandwidth, visible-infrared) and spatial (1̃m) resolution. Ground spectra were measured using the FieldSpecPro Full Range (FR) spectroradiometer from Analytical Spectral Devices (ASD, 2006). The study area is a grass field within the Mark Twain National Forest. The AISA images were processed with three different classification methods, and the results are validated based on field surveys. Major findings include: (1) the averaged sericea spectra is more accurate for mapping purposes; (2) moderate spectral response instead of strong spectral response is better in sericea mapping for they have less confusion with other classes; and (3) the MNF (Minimum Noise Fraction) and MTMF (Mixture Tuned Matched Filtering) approach is the best for mapping sericea.
    URI
    https://hdl.handle.net/10355/5051
    https://doi.org/10.32469/10355/5051
    Degree
    M.A.
    Thesis Department
    Geography (MU)
    Collections
    • 2007 MU theses - Freely available online
    • Geography electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems