VLT / Infrared Integral Field Spectrometer Observations of Molecular Hydrogen Lines in the Knots in the Planetary Nebula NGC 7293 (the Helix Nebula)

MOspace/Manakin Repository

Breadcrumbs Navigation

VLT / Infrared Integral Field Spectrometer Observations of Molecular Hydrogen Lines in the Knots in the Planetary Nebula NGC 7293 (the Helix Nebula)

Please use this identifier to cite or link to this item: http://hdl.handle.net/10355/5174

[+] show full item record


Title: VLT / Infrared Integral Field Spectrometer Observations of Molecular Hydrogen Lines in the Knots in the Planetary Nebula NGC 7293 (the Helix Nebula)
Author: Matsuura, M.; Speck, Angela K.; Smith, M. D.; Zijlstra, A. A.; Viti, S.; Lowe, K. T. E.; Redman, M.; Wareing, C. J.; Lagadec, E.
Keywords: ISM
planetary nebulae
Infrared stars
ISM clouds
Date: 2008-02-02
Citation: arXiv:0709.3065v1
Abstract: Knots are commonly found in nearby planetary nebulae (PNe) and star forming regions. Within PNe, knots are often found to be associated with the brightest parts of the nebulae and understanding the physics involved in knots may reveal the processes dominating in PNe. As one of the closest PNe, the Helix Nebula (NGC 7293) is an ideal target to study such small-scale (~300 AU) structures. We have obtained infrared integral spectroscopy of a comet-shaped knot in the Helix Nebula using SINFONI on the Very Large Telescope at high spatial resolution (50-125 mas). With spatially resolved 2 micron spectra, we find that the H2 rotational temperature within the cometary knots is uniform. The rotational-vibrational temperature of the cometary knot (situated in the innermost region of the nebula, 2.5 arcmin away from the central star), is 1800 K, higher than the temperature seen in the outer regions (5-6 arcmin from the central star) of the nebula (900 K), showing that the excitation temperature varies across the nebula. The obtained intensities are reasonably well fitted with 27 km s-1 C-type shock model. This ambient gas velocity is slightly higher than the observed [HeII] wind velocity of 13 km s-1. The gas excitation can also be reproduced with a PDR (photo dominant region) model, but this requires an order of magnitude higher UV radiation. Both models have limitations, highlighting the need for models that treats both hydrodynamical physics and the PDR.
URI: http://hdl.handle.net/10355/5174

This item appears in the following Collection(s)

[+] show full item record