[-] Show simple item record

dc.contributor.advisorForgács, Gabor, 1949-eng
dc.contributor.authorSun, Mingzhai, 1979-eng
dc.date.issued2008eng
dc.date.submitted2008 Springeng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (viewed on June 17, 2009)eng
dc.descriptionVita.eng
dc.descriptionIncludes bibliographical references.eng
dc.descriptionThesis (Ph. D.) University of Missouri-Columbia 2008.eng
dc.descriptionDissertations, Academic -- University of Missouri--Columbia -- Physics.eng
dc.description.abstractCholesterol plays an indispensable role in regulating the properties of the cell membrane. In particular, lipid rafts, specific membrane domains, which are thought to be required for a number of cell functions, such as receptor mediated signaling and membrane trafficking, are dispersed when cell cholesterol is extracted. There is also evidence showing that cholesterol affects the cells' deformability, an important factor in the development of atherosclerosis. In this study, we investigated the effect of cellular cholesterol on the mechanical properties of bovine aortic endothelial cells (BAECs) and their correlation with the development of atherosclerosis. To compare the mechanical properties of cells with different cholesterol content, we have developed a method to measure the forces needed to extract nanotubes (tethers) from their membranes, using atomic force microscopy (AFM). Our observations show that cholesterol depletion of BAECs resulted in significant increase of membrane-cytoskeleton adhesion. An increase in cellular cholesterol to a level higher than that in normal cells caused decrease of the membrane cytoskeleton adhesion and dramatic decrease of the effective surface viscosity of their membranes. While cholesterol depletion and enrichment had no apparent effect on the intensity of F-actin specific fluorescence, disrupting F-actin with latrunculin A abrogated the observed effects. Fluorescence recovery after photobleaching experiments were also performed to measure the lateral mobility of a lipid probe (DiIC₁₂) at different cholesterol contents. The results are consistent with the AFM measurement.To investigate the molecular bases of the phenomena, we focussed on the regulatory phospholipid, phosphatidylinositol 4,5-biophosphate (PIP2), which is involved in a variety of cell functions, especially the regulation of cytoskeleon, and membrane-cytoskeleton adhesion. In the plasma membrane, PIP2 accumulates in cholesterol-rich domains, and its concentration decreases upon cholesterol depletion.By culturing BAECs with neomycin or by transfecting them to express the GFP-tagged PH domain from phospholipase C [delta], we sequester PIP2 to mimic the effect induced by cholesterol depletion. Interestingly, PIP2 sequestering by either approach decreases cell membrane deformability as cholesterol depletion does. This result suggests that cholesterol depletion affects cell mechanical properties by altering the concentration/distribution of PIP2, which may further change the cortical F-actin network. Furthermore, our studies demonstrate that AFM can be used to relate and correlate biomolecular and biophysical properties.eng
dc.identifier.merlinb6902294xeng
dc.identifier.oclc401748548eng
dc.identifier.urihttps://hdl.handle.net/10355/5499
dc.identifier.urihttps://doi.org/10.32469/10355/5499eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.subject.lcshAtherosclerosiseng
dc.subject.lcshPhospholipidseng
dc.subject.lcshCholesteroleng
dc.subject.lcshCell membraneseng
dc.subject.lcshAtomic force microscopyeng
dc.titleCell mechanics studied using atomic force microscopyeng
dc.typeThesiseng
thesis.degree.disciplinePhysics and astronomy (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record