Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2008 Dissertations (MU)
    • 2008 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2008 Dissertations (MU)
    • 2008 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Toroidalization of locally toroidal morphisms

    Hanumanthu, Krishna Chaithanya, 1981-
    View/Open
    [PDF] public.pdf (2.209Kb)
    [PDF] short.pdf (32.76Kb)
    [PDF] research.pdf (189.3Kb)
    Date
    2008
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Let X and Y be nonsingular varieties over an algebraically closed field [kappa] of characteristic zero. A toroidal structure on X is a simple normal crossing divisor DX on X. Suppose that DX and DY are toroidal structures on X and Y respectively. A dominant morphism [function] : X [arrow] Y is toroidal (with respect to the toroidal structures DX and DY ) if for all closed points [rho] 2 X, [function] is isomorphic to a toric morphism of toric varieties specified by the toric charts at [rho] and [function] [rho]. A dominant morphism [function] : X [arrow] Y of nonsingular varieties is toroidalizable if there exist sequences of blow ups with nonsingular centers [pi] : Y₁ [arrow] Y and [pi]₁ : X₁ [arrow] X so that the induced map [function]₁ : X1 [arrow] Y1 is toroidal. Let [function] : X [arrow] Y be a dominant morphism. Suppose that there exist finite open covers (Ui) and (Vi) of X and Y respectively such that [function] (Ui) [arrow] Vi and the restricted morphisms [function] : (Ui) [arrow] Vi are toroidal for all i. [function] is then called locally toroidal. It is proved that a locally toroidal morphism from an arbitrary variety to a surface is toroidalizable.
    URI
    https://hdl.handle.net/10355/5608
    https://doi.org/10.32469/10355/5608
    Degree
    Ph. D.
    Thesis Department
    Mathematics (MU)
    Collections
    • 2008 MU dissertations - Freely available online
    • Mathematics electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems