[-] Show simple item record

dc.contributor.advisorSmith, Douglas E., 1962-eng
dc.contributor.authorMiddleton, Joseph Ervineng
dc.date.issued2008eng
dc.date.submitted2008 Summereng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (viewed on August 13, 2009)eng
dc.descriptionThesis (M.S.) University of Missouri-Columbia 2008.eng
dc.description.abstractThis research numerically evaluates elastic non-isotropic material properties of fiber reinforced composite materials. Calculations are performed with a finite element mesh composed of a uniform array of three dimensional finite elements. To better represent spatial inhomogeneities, an increased number of Gauss points are employed during elemental stiffness calculations. Rather than making a complex finite element mesh with element boundaries at all fiber-matrix interfaces, Gauss points are used to define materials points as in fiber depending on where the point lies within the model. A correction factor is applied to accommodate strain differences within elements that contain both fiber and matrix, allowing for greater accuracy in the uniform mesh elements. In this approach, fewer elements can be used to model a composite system enabling computational time and demands of memory to be reduced. The method also avoids complex meshing routines that are required when fiber-matrix interface geometries are needed. The uniform mesh finite element method developed here is used to predict effective properties for curved long fiber composites and for an actual long fiber composite sample provided by Oak Ridge National Laboratory. The results of the curved fiber uniform finite element models are compared to modified Halpin-Tsai and Tandon-Weng micromechanical models where a good agreement is demonstrated. A convergence analysis is performed to show stability and convergence of results. Image processing techniques are applied to the Oak Ridge National Laboratory sample in order to extract a model from the CT data which was provided.eng
dc.description.bibrefIncludes bibliographical referenceseng
dc.identifier.merlinb70628075eng
dc.identifier.oclc430350363eng
dc.identifier.urihttps://hdl.handle.net/10355/5684
dc.identifier.urihttps://doi.org/10.32469/10355/5684eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri-Columbia. Graduate School. Theses and Dissertations. Theses. 2008 Theseseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
dc.subject.lcshFibrous composites -- Elastic propertieseng
dc.subject.lcshFinite element methodeng
dc.subject.lcshCrystal whiskerseng
dc.subject.lcshManufacturing industrieseng
dc.titleElastic property prediction of long fiber composites using a uniform mesh finite element methodeng
dc.typeThesiseng
thesis.degree.disciplineMechanical and aerospace engineering (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelMasterseng
thesis.degree.nameM.S.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record