Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2008 Theses (MU)
    • 2008 MU theses - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2008 Theses (MU)
    • 2008 MU theses - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Flow and heat transfer properties of Mono Craters rhyolites : effects of temperature, water content, and crystallinity

    Romine, William
    View/Open
    [PDF] public.pdf (7.907Kb)
    [PDF] short.pdf (7.630Kb)
    [PDF] research.pdf (4.564Mb)
    Date
    2008
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    The nature of volcanic processes, including rate of magma ascent, exsolution of volatiles, eruption style, and flow distance, is highly dependent on the viscosity of the associated magma and its ability to transfer heat. We present measurements of the viscosity and thermal diffusivity of Quaternary rhyolitic lava flows from Mono Craters, California. We quantify the effects of temperature, dissolved water content, and crystallinity on viscosity and thermal diffusivity. We use the parallel plate and concentric cylinder methods to obtain viscosity measurements between 5 x 103̂ to 8 x 101̂2 Pas, from superliquidus conditions to the glass transition; the laser flash (LFA) method to measure thermal diffusivity of samples between room and subliquidus temperatures. The investigated obsidian samples, collected from three different flow lobes, contain between 0.1 and 1.1 wt.% H2O, and less than 2 vol.% crystals. We also remelted one sample from each lobe in a muffle furnace to produce nearly anhydrous, crystal free glass. We fit our viscosity data to four literature models relevant to rhyolitic melts, two developed specifically for rhyolites and two global models. We add to this by presenting our own models based on the empirical TVF equation and the theory-based Adam-Gibbs equation, finding that the Adam- Gibbs model fits our data slightly better. We also present a model relating the thermal diffusivity of the samples to their crystal contents and temperatures below the glass transition. Water has a negligible effect on thermal diffusivity at the low concentrations in the samples studied.
    URI
    https://doi.org/10.32469/10355/5685
    https://hdl.handle.net/10355/5685
    Degree
    M.S.
    Thesis Department
    Geological sciences (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2008 MU theses - Freely available online
    • Geological Sciences electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems