[-] Show simple item record

dc.contributor.advisorMiller, William Hughes, 1941-eng
dc.contributor.authorYoon, Il.eng
dc.date.issued2008eng
dc.date.submitted2008 Summereng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (viewed on August 19, 2009)eng
dc.descriptionThesis (M.S.) University of Missouri-Columbia 2008.eng
dc.description.abstractNeutron imaging can produce unique images of objects making it a useful nondestructive technique with various applications in science and industry. Oscillating heat pipes (OHP) are being studied as a higher performance way of cooling high power electronics. They have shown better performance than conventional heat pipes, but little is known about the dynamics of the liquid and vapor inside the OHP. In these studies, the dynamics of liquid and vapor were studied by calculating the liquid and vapor volume fractions in different sections of the OHPs using neutron imaging and the resulting data were compared with external temperature data to investigate the workings of the OHPs. The results show that neutron imaging is a useful technique to quantify the dynamics of the vapor and liquid in OHPs. Imaging shows that at lower heat fluxes water does not circulate around the heat pipe as it does at higher heat fluxes. Instead, the evaporator, where heat is input, is largely vapor with only very short entrances of liquid. In contrast, acetone circulates around the heat pipe at lower heat input as well as at higher heat input. The acetone-OHP shows better performance than a water-OHP due to more active liquid movement. It is inferred that viscosity and density affect the performance of OHP. Temporal volume fraction data corresponds well with temperature data. In contrast, individual temporal volume fraction data does not show as good a correspondence with individual temperature at each thermocouple position.eng
dc.description.bibrefIncludes bibliographical references.eng
dc.identifier.merlinb70702445eng
dc.identifier.oclc431373338eng
dc.identifier.urihttps://doi.org/10.32469/10355/5694eng
dc.identifier.urihttps://hdl.handle.net/10355/5694
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri-Columbia. Graduate School. Theses and Dissertations. Theses. 2008 Theseseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
dc.subject.lcshRadiography, Industrialeng
dc.subject.lcshHeat pipes -- Radiographyeng
dc.subject.lcshFluid dynamicseng
dc.subject.lcshNeutronseng
dc.subject.lcshOscillationseng
dc.titleTwo-phase flow dynamics by real-time neutron imaging in oscillating heat pipeeng
dc.typeThesiseng
thesis.degree.disciplineNuclear engineering (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelMasterseng
thesis.degree.nameM.S.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record