[-] Show simple item record

dc.contributor.advisorThelen, Jay J.eng
dc.contributor.authorWilson, Rashaun Shelae, 1988-eng
dc.date.issued2016eng
dc.date.submitted2016 Springeng
dc.descriptionDissertation supervisor: Dr. Jay J. Thelen.eng
dc.descriptionIncludes vita.eng
dc.description.abstractOilseed development involves coordination and regulation of a complex metabolic network for efficient production of storage compounds, including fatty acids, proteins, and carbohydrates. Recent advances in mass spectrometry have enabled identification of thousands of proteins and post-translational modifications in a variety of oilseed species, however, much remains to be known about their regulatory roles in seed development. A current focus in oilseed research is regulatory elucidation of these proteins and modifications, which can ultimately be applied to genetic engineering applications for higher production of storage compounds. This work involves characterization of an Arabidopsis 14-3-3 isoform [chi], an abundant and phosphorylated protein identified in seed development. 14-3-3 [chi] involvement in phosphorus stress was demonstrated and used to elucidate the function of phosphorylation in vivo. Results indicate that phosphorylation of 14-3-3 [chi] affects dimerization and interactions with client proteins. In addition, a targeted mass spectrometry method was employed to absolutely quantify heteromeric acetyl-CoA carboxylase (ACCase) subunits and putative inhibitory BADC proteins during feedback inhibition and temporal regulation. Quantitation revealed ACCase expression is negatively regulated during feedback inhibition by Tween feeding, while BADC expression displayed a positive response. These results suggest BADC proteins could inhibit the ACCase complex during feedback inhibition. ACCase and BADC expression was also found to be temporally regulated during Arabidopsis silique development. Furthermore, abundance of an ACCase subunit, [alpha]-CT, was low in Arabidopsis siliques, suggesting that it could be a limiting component of the complex.eng
dc.description.bibrefIncludes bibliographical references (pages 120-128).eng
dc.format.extent1 online resource (x, 129 pages) : illustrationseng
dc.identifier.merlinb118928053eng
dc.identifier.oclc993629983eng
dc.identifier.urihttps://hdl.handle.net/10355/56997
dc.identifier.urihttps://doi.org/10.32469/10355/56997eng
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsOpenAccess.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.eng
dc.subject.FASTArabidopsis thaliana -- Researcheng
dc.subject.FASTPhosphorylationeng
dc.subject.FASTAcetylcoenzyme Aeng
dc.subject.FASTMass spectrometryeng
dc.titleCharacterization of 14-3-3 [chi] phosphorylation in phosphorus stress in Arabidopsis thaliana and investigation of acetyl-coA carboxylase regulation using quantitative mass spectrometryeng
dc.typeThesiseng
thesis.degree.disciplineBiochemistry (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record