Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2008 Theses (MU)
    • 2008 MU theses - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2008 Theses (MU)
    • 2008 MU theses - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Forced convection in nanofluids over a flat plate

    Pfautsch, Emily
    View/Open
    [PDF] public.pdf (2.334Kb)
    [PDF] short.pdf (9.323Kb)
    [PDF] research.pdf (2.186Mb)
    Date
    2008
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    This work analyzes the characteristics, flow development, and heat transfer coefficient of nanofluids under laminar forced convection over a flat plate. Nanofluids are engineered colloids composed of a base fluid and nanometer sized particles. They are studied because they have been shown to possess enhanced heat transfer properties over those of the base fluid. This analysis studies alumina nanoparticles submersed in water and also alumina nanoparticles submersed in ethylene glycol. A system of equations for continuity, momentum, and energy was developed and solved using Mathematica. Nanoparticle diameter size, nanoparticle volume fraction, nanofluid temperature, and free stream velocity were varied to observe their effects on nanofluid characteristics and the heat transfer coefficient. The nanoparticle volume fraction and nanoparticle size proved to be the most dominate parameters of those that were studied. Varying the nanoparticle volume fraction distribution showed that it is vital for the nanoparticles to stay evenly suspended throughout the fluid for there to be any enhancement in the heat transfer coefficient. When the nanoparticles were evenly distributed, the heat transfer coefficient increased anywhere from 2 to 3 times compared to nanofluids with settled nanoparticles.
    URI
    https://doi.org/10.32469/10355/5745
    https://hdl.handle.net/10355/5745
    Degree
    M.S.
    Thesis Department
    Mechanical and aerospace engineering (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2008 MU theses - Freely available online
    • Mechanical and Aerospace Engineering electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems