Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2015 Dissertations (MU)
    • 2015 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2015 Dissertations (MU)
    • 2015 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Contribution of AT1R mechanoactivation to the arterial myogenic response and its regulation by RGS5 protein in skeletal muscle arterioles

    Hong, Kwangseok
    View/Open
    [PDF] public.pdf (2.887Kb)
    [PDF] research.pdf (6.899Mb)
    [PDF] short.pdf (11.91Kb)
    Date
    2015
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Although intracellular mechanisms underlying the arteriolar myogenic response have been well-defined, the mechanotransduction events transducing the mechanical stimulus remain unclear. Recently, ligand-independent activation of G protein-coupled receptors (in particular, the angiotensin II type 1 receptor; AT1R) has been suggested to play a major role in vascular smooth muscle mechanotransduction, thereby contributing to myogenic constriction. However, the downstream pathways following ligand-independent activation of the AT1R have not been clearly elucidated. Our studies provide pharmacological evidence that the mechanically activated AT1R generates diacylglycerol which in turn activates PKC that subsequently induces actin cytoskeleton reorganization for myogenic constriction. In terms of physiological roles, the arterial myogenic response acts to generate vascular tone, prevent capillaries from being damaged, and reduce edema due to high capillary hydrostatic pressure. Thus, an exaggerated AT1R-mediated myogenic constriction could conceivably contribute to vascular disorders. As a result, small arteries likely exhibit negative feedback regulatory mechanisms to prevent such an exaggerated myogenic response. In regard to this, we discovered that ligand-dependent or-independent activation of the AT1R causes trafficking of an important regulatory molecule, RGS5 (Regulators of G protein Signaling) protein, which may modulate Ang II or myogenic-mediated constriction by terminating Gq/11 protein-dependent signaling.
    URI
    https://hdl.handle.net/10355/57770
    https://doi.org/10.32469/10355/57770
    Degree
    Ph. D.
    Thesis Department
    Physiology (Medicine) (MU)
    Rights
    OpenAccess
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2015 MU dissertations - Freely available online
    • Medical Pharmacology and Physiology electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems