Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2015 Dissertations (MU)
    • 2015 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2015 Dissertations (MU)
    • 2015 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Development of a composite acellular tissue graft for musculoskeletal tissue engineering

    Smith, Sarah Elizabeth
    View/Open
    [PDF] public.pdf (6.159Kb)
    [PDF] research.pdf (9.625Mb)
    [PDF] short.pdf (11.33Kb)
    Date
    2015
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    A composite acellular tissue graft comprised of decellularized tendon conjugated with nanomaterials has been developed for musculoskeletal tissue engineering applications. The focus of this dissertation is on the development of composite grafts derived from decellularized human tendon conjugated with gold nanoparticles and hydroxyapatite nanoparticles for use in anterior cruciate ligament (ACL) reconstruction. Gold nanoparticles are used to promote remodeling, cellularity, and biological incorporation of grafts. Hydroxyapatite nanoparticles are used to promote osseointegration, cellularity, and to enhance the graft/bone interface. These composite grafts along with several other variations, were characterized in vitro using a variety of cell-based assays including cell viability, cell proliferation, and cell migration assays. Two in vivo studies were conducted. A green fluorescent protein (GFP) porcine model was investigated as a new method to evaluate host tissue integration into soft tissue grafts as well as the in vivo biocompatibility of subcutaneously implanted composite grafts. Results demonstrate biocompatibility and remodeling of composite grafts and the value of using the GFP model as a qualitative method for assessing host tissue integration. A rabbit ACL reconstruction model was used to investigate graft remodeling in addition to the overall viability of using composite grafts to serve as a functional ACL replacement. Results demonstrate successful replacement of ACLs using composite grafts with enhanced remodeling from the addition of nanoparticles. Overall, studies demonstrate the success and potential further application of using composite grafts for musculoskeletal tissue engineering applications. Future studies will include expanding development of variations of these composite materials to address additional clinical needs.
    URI
    https://hdl.handle.net/10355/57782
    https://doi.org/10.32469/10355/57782
    Degree
    Ph. D.
    Thesis Department
    Biological engineering (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2015 MU dissertations - Freely available online
    • Biological Engineering electronic theses and dissertations - CAFNR (MU)
    • Biological Engineering electronic theses and dissertations - Engineering (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems