Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2005 Dissertations (MU)
    • 2005 MU dissertations - Access restricted to UM
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2005 Dissertations (MU)
    • 2005 MU dissertations - Access restricted to UM
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Analysis and modeling of direct selective laser sintering of two-component metal powders

    Chen, Tiebing
    View/Open
    [PDF] public.pdf (7.740Kb)
    [PDF] short.pdf (7.146Kb)
    [PDF] research.pdf (8.072Mb)
    Date
    2005
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Direct Selective Laser Sintering (SLS) is an emerging technology of Solid Freeform Fabrication (SFF) that 3-D parts are built from the metal-based powder bed with CAD data. A one-dimensional analytical model of melting in a two-component powder layer with finite thickness subjected to a constant heat flux heating and a two-dimensional numerical model of SLS of a two-component powder layer with a moving laser beam scanning were developed consecutively. Three-dimensional modeling of laser sintering of a two-component metal powder mixture under a moving Gaussian laser beam was investigated numerically at last. The effects of the moving heat source intensity, the scanning velocity, the thickness of the powder layer and the number of existing sintered layers underneath on the sintering depth, the configuration of the heat affected zone (HAZ) and the temperature distribution are discussed.
    URI
    https://hdl.handle.net/10355/5818
    https://doi.org/10.32469/10355/5818
    Degree
    Ph. D.
    Thesis Department
    Mechanical and aerospace engineering (MU)
    Rights
    Access to files is limited to the campuses of the University of Missouri.
    Collections
    • 2005 MU dissertations - Access restricted to UM
    • Mechanical and Aerospace Engineering electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems