Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2005 Dissertations (MU)
    • 2005 MU dissertations - Access restricted to UM
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2005 Dissertations (MU)
    • 2005 MU dissertations - Access restricted to UM
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Micro-imaging characterization of mouse models of metastasis

    Winkelmann, Christopher Todd, 1971-
    View/Open
    [PDF] public.pdf (10.07Kb)
    [PDF] short.pdf (9.780Kb)
    [PDF] research.pdf (4.393Mb)
    Date
    2005
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Non-invasive imaging techniques have been recently developed to characterize animal models of disease. The overarching hypothesis of this work explores the use of three micro-imaging modalities, including Micro-CT, PET and SPECT, to characterize tumor anatomical progression, metabolism, bone lesion remodeling, and/or gastrin releasing peptide receptor expression in mouse models of metastatic melanoma and prostate and breast cancer bone metastasis. Micro-CT was shown to provide excellent anatomical information about tumor progression in several different tissues including lung, bone, and subcutaneous tissues. Micro-PET imaging demonstrated increased tumor metabolism in melanoma tumors, but was not able to discern bone remodeling in breast cancer bone lesions. Micro-SPECT imaging demonstrated gastrin-releasing peptide receptor expression in a prostate cancer bone metastasis model. The results from this work demonstrate the ability of micro-imaging technologies to non-invasively probe mouse models of disease to obtain information in vivo that is not possible with ex vivo experimental techniques.
    URI
    https://hdl.handle.net/10355/5820
    https://doi.org/10.32469/10355/5820
    Degree
    Ph. D.
    Thesis Department
    Veterinary pathobiology area program (MU)
    Rights
    Access is limited to the campuses of the University of Missouri.
    Collections
    • 2005 MU dissertations - Access restricted to UM
    • Veterinary Pathobiology electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems