Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Access restricted to MU
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - MU Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2006 Dissertations (MU)
    • 2006 MU dissertations - Access restricted to MU
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Properties of low-dimensional systems

    Lapilli, Cintia Mariela, 1980-
    View/Open
    [PDF] public.pdf (233.3Kb)
    [PDF] short.pdf (65.65Kb)
    [PDF] research.pdf (2.153Mb)
    Date
    2006
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] In this work we study the equilibrium properties of systems in two-dimensions, and the effects that discrete symmetry, space dimensionality, character of the interaction and number of internal degrees of freedom have on the properties of two systems of classical and quantum nature. We investigate macroscopic properties from a family of classical Hamiltonian models with discrete degrees of freedom, and we observed how the discreteness of spin variables can be "washed out" in ensemble averages, where different microscopic interactions between molecules or spins, exhibit identical thermodynamic behavior over a wide range of temperatures. This many-to-one map of intermolecular interactions onto thermodynamic states, demonstrates previously unknown limits for macroscopic distinguishability of different microscopic interactions. Another part of the work is committed to the study of collective modes that would give rise to macroscopic states with discrete symmetries in electron systems in the Fractional Quantum Hall regime. In this approach, we construct broken rotational symmetry states and compute the spectrum of excitations. This study is relevant to the understanding of the Wigner crystallization in the Fractional Quantum Hall Effect, and properties and nature of Quantum Hall Liquid Crystals.
    URI
    https://doi.org/10.32469/10355/5862
    https://hdl.handle.net/10355/5862
    Degree
    Ph. D.
    Thesis Department
    Physics (MU)
    Rights
    Access is limited to the campus of the University of Missouri--Columbia.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • Physics and Astronomy electronic theses and dissertations (MU)
    • 2006 MU dissertations - Access restricted to MU

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems