[-] Show simple item record

dc.contributor.advisorBooth, Frank W.eng
dc.contributor.authorRathbone, Christopher R., 1977-eng
dc.date.issued2006eng
dc.date.submitted2006 Falleng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionVita.eng
dc.description"December 2006"eng
dc.descriptionThesis (Ph. D.) University of Missouri-Columbia 2006.eng
dc.description.abstract[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Skeletal muscle fibers are multinucleated with each myonucleus capable of governing a finite cytoplasmic volume. In healthy skeletal muscle, myonuclear number decreases with muscle atrophy and fiber damage and increases with hypertrophy, to maintain a constant myonuclear to cytoplasmic ratio. Myonuclei are post-mitotic, therefore, the repair, regrowth, and hypertrophy of skeletal muscle relies on satellite cells, muscle precursor cells located between the basal lamina and plasmalemma of mature muscle fibers. Since decreased satellite cell proliferation may limit the regrowth of old skeletal muscle following atrophy or damage, it is important to understand the mechanisms that control satellite cell proliferation to enable the development of countermeasures to treat muscle atrophy that occurs with age. Adenoviral infection of primary satellite cells with the forkhead transcription factor FoxO3a decreased satellite cell cycle progression; this process occurred, in part, through increases in the promoter activity and protein levels of the cyclin dependent kinase (cdk) inhibitor p27superscript Kip1], without altering p21[superscript Waf/Cip1] or cyclin D1 -CDK 4/6 activity. Conversely, increases in satellite cell cycle progression following adenoviral infection of Sirt1 were associated with a decrease in the cyclin dependent kinase inhibitor p21[superscript Waf/Cip1], increased p27[superscript Kip1], and increased cyclin D1 -CDK4/6 activity. In summary, it is speculated that these studies suggest that increasing FoxO3a expression alters factors that would decrease cell cycle progression of primary satellite cells, and this inhibition is likely through the inhibition of cyclin E -CDK2 and/or cyclin A -CDK2 activities via increases in p27[superscript Kip1]. Also, increasing the expression of Sirt1 increases satellite cell cell cycle progression by decreasing the expression levels of p21[superscript Waf/Cip1]. These studies are important for the understanding of the mechanisms that regulate satellite cell proliferation, more specifically, these studies have contributed to the understanding of two molecules that control satellite cell proliferation, FoxO3a and Sirt1.eng
dc.description.bibrefIncludes bibliographical referenceseng
dc.identifier.merlinb67688354eng
dc.identifier.oclc320952603eng
dc.identifier.urihttps://doi.org/10.32469/10355/5866eng
dc.identifier.urihttps://hdl.handle.net/10355/5866
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri-Columbia. Graduate School. Theses and Dissertationseng
dc.rightsAccess is limited to the campus of the University of Missouri--Columbia.eng
dc.rights.licenseThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
dc.subject.lcshMuscles -- Physiologyeng
dc.subject.lcshSatellite cells -- Physiologyeng
dc.subject.lcshMuscular atrophyeng
dc.subject.lcshTranscription factorseng
dc.subject.lcshAmidaseseng
dc.titleMechanisms regulating skeletal muscle satellite cell cycle progressioneng
dc.typeThesiseng
thesis.degree.disciplineVeterinary biomedical sciences (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record