[-] Show simple item record

dc.contributor.advisorGhosh, Tushar K., Dr.eng
dc.contributor.advisorPrelas, Mark Antonio, 1953-eng
dc.contributor.authorSotomayor-Rivera, Alexis, 1963-eng
dc.date.issued2007eng
dc.date.submitted2007 Springeng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (viewed on October 16, 2007)eng
dc.descriptionVita.eng
dc.descriptionThesis (Ph. D.) University of Missouri-Columbia 2007.eng
dc.description.abstract[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Micron and nano-phase diamond powders were doped with boron in order to change their various chemical properties. Diamond possesses several technologically important properties including extreme hardness, high electrical resistance, chemical inertness, high thermal conductivity, high electron hole mobilities, and optical transparency. Boron-doping of diamond powders via Thermal Diffusion Process was used in this study. Natural boron contains 80.1% [superscript 11]B and 19.9% [superscript 10]B. [superscript 10]B has large neutron capture cross section with the reaction [superscript 10]B(n, [alpha])[superscript 7] Li. The energy release in the reaction is rather high (2.71 MeV), facilitating radiation defects in the sample. The introduction of boron atoms also changed the structure and properties of the diamond powder including resistance to oxidation. Following doping with boron, the diamond powders were irradiated by thermal neutrons by fluence values of 3x10[superscript 15], and 4.3x10[superscript 18]n/cm[superscript 2] at the Missouri University Research Reactor (MURR). The creation of micro-porous structure in diamond powders for storage of hydrogen is discussed. Prompt Gamma Neutron Activation Analysis was used to determine the concentration of boron in the diamond powder. Scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), and Thermogravimetric Analysis (TGA) were also employed to study the morphology and structure of the diamond particles. Raman spectroscopy showed that glassy and microcrystalline carbon structures were formed on irradiation. A significant amount of boron was diffused into both nano and micron size diamond powders. The boron concentration before and after irradiation suggested that about 35% [superscript 10]B interacted with neutrons. Hydrogen was diffused into both micron and nano size diamond powder before and after boron-doping, and also after irradiation on to evaluate the feasibility of the proposed technique for enhancement of hydrogen storage capacity of diamond powders. Hydrogen storage capacity of undoped-nontreated micron size diamond powder was 0.51 wt% H[subscript 2]. Hydrogen storage capacity of diamond power when treated in hydrogen plasma was about 1.47 wt% H[subscript 2]. Surprisingly hydrogen was not detected in boron-doped, irradiated diamond powders by PGNAA. One of the reasons could be the sample amount since the lower limit of detection of total H[2] by PGNAA is 3.93 ug/g of sample. The Raman spectrum showed the existence of CH bonds suggesting the presence of hydrogen in the sample.eng
dc.description.bibrefIncludes bibliographical referenceseng
dc.identifier.merlinb60591419eng
dc.identifier.oclc174284382eng
dc.identifier.urihttps://doi.org/10.32469/10355/6004eng
dc.identifier.urihttps://hdl.handle.net/10355/6004
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsAccess is limited to the campuses of the University of Missouri.eng
dc.subject.lcshNanostructured materialseng
dc.subject.lcshDiamond powdereng
dc.subject.lcshHydrogen -- Storageeng
dc.titleModification of nano and micro-phase diamond powder for enhancement of hydrogen storageeng
dc.typeThesiseng
thesis.degree.disciplineNuclear engineering (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record