[-] Show simple item record

dc.contributor.advisorShannon, J. Grovereng
dc.contributor.advisorSleper, D. A.eng
dc.contributor.advisorNguyen, Henry T.eng
dc.contributor.advisorArelli, Prakash R., 1940-eng
dc.contributor.authorLu, Peiqin, 1971-eng
dc.date.issued2007eng
dc.date.submitted2007 Summereng
dc.descriptionThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.eng
dc.descriptionTitle from title screen of research.pdf file (viewed on January 2, 2008)eng
dc.descriptionThesis (Ph. D.) University of Missouri-Columbia 2007.eng
dc.description.abstract[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Soybean cyst nematode (SCN) Heterodera glycines Ichinohe is the most serious pest of soybean [Glycine max (L.) Merr.] in the world. The effectiveness of breeding soybean SCN resistant cultivars is reduced by the variation of SCN population and narrow genetic basis of resistant soybean cultivars. Hence, it is important to investigate new soybean SCN resistant sources for new genes that confer resistance to SCN field populations such as HG type 1.2.7 to provide durable resistance. Soybean plant introductions PI 467312 and PI 507354, are unique, with resistance to SCN multiple HG types respectively. However, the genetic basis of SCN resistance in these PIs is not known. The objectives of this study are to investigate the inheritance of resistance to SCN HG types 0, 1.2.7, and 1.3.6.7 in PI 467312 and the SCN resistance to SCN HG types 2.5.7 and 1.2.7 in PI 507354, to identify and map quantitative trait loci (QTL) associated with resistance to SCN HG types 0, 1.2.7, 1.3.6.7 in PI 467312 and resistance to SCN HG types 2.5.7, and 1.2.7 in PI 507354. The study showed that resistance to HG types 1.2.7, and 1.3.6.7 in Pop 467 were conditioned by one dominant and two recessive genes (Rhg rhg rhg) and resistance to HG type 0 was controlled by three recessive genes (rhg rhg rhg). Resistance to both HG types 2.5.7 and 1.2.7 in Pop 507 fit a one dominant and 3 recessive gene model (Rhg rhg rhg rhg). Two to three QTLs were associated with resistance to each HG type (race) in both populaitons.eng
dc.description.bibrefIncludes bibliographical references.eng
dc.identifier.merlinb61726382eng
dc.identifier.oclc186556325eng
dc.identifier.urihttps://doi.org/10.32469/10355/6014eng
dc.identifier.urihttps://hdl.handle.net/10355/6014
dc.languageEnglisheng
dc.publisherUniversity of Missouri--Columbiaeng
dc.relation.ispartofcommunityUniversity of Missouri--Columbia. Graduate School. Theses and Dissertationseng
dc.rightsAccess is limited to the campuses of the University of Missouri.eng
dc.subject.lcshSoybean cyst nematodeeng
dc.subject.lcshSoybean -- Disease and pest resistanceeng
dc.titleInvestigation of resistance to Heterodera glycines (scn) in soybean plant introductions (pi) 467312 and 507354eng
dc.typeThesiseng
thesis.degree.disciplinePlant sciences (MU)eng
thesis.degree.grantorUniversity of Missouri--Columbiaeng
thesis.degree.levelDoctoraleng
thesis.degree.namePh. D.eng


Files in this item

[PDF]
[PDF]
[PDF]

This item appears in the following Collection(s)

[-] Show simple item record