Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2017 Dissertations (UMKC)
    • 2017 UMKC Dissertations - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2017 Dissertations (UMKC)
    • 2017 UMKC Dissertations - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Musculoskeletal Modeling of The Human Elbow Joint

    Rahman, Munsur
    View/Open
    [PDF] PDF (5.847Mb)
    Date
    2017
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Comprehensive knowledge of the in vivo loading of elbow structures is essential in understanding the biomechanical causes associated with elbow diseases and injuries, and to find appropriate treatment. Currently, in vivo measurements of ligament, and muscle forces, and cartilage contact pressures during elbow activities is not possible. Therefore, computational models needs to be employed for prediction. A dynamic computational model in which muscle, ligament and articular surface contact forces are predicted concurrently would be the ideal tool for patient specific pre-operative planning, computer aided surgery and rehabilitation. Computational models of the elbow have been developed to study joint behavior, but all of these models have limited applicability because the joint structure was modeled as an idealized joint (e.g. hinge joint) rather than a true anatomical joint. Three dimensional studies of elbow passive motion showed that the elbow does not function as a simple hinge joint. An accurate elbow model should reflect the intrinsic laxity of the elbow especially for clinical applications. Presented here are methods for developing an anatomically based computational model of the human elbow joint that replicates the mechanical behavior of the joint and is capable of concurrent prediction of articular contact, ligament, and muscle forces under dynamic conditions. The model performance was evaluated in both a cadaveric study and a living human subject experiment. The validated models were then used to investigate the effects of medial and lateral collateral ligament deficiency on elbow joint kinematics, ligament loads, and articular contact pressure distribution.
    Table of Contents
    Introduction -- Background -- Prediction of elbow joint contact mechanics in the multibody framework -- Lateral collateral ligament deficiency of the elbow joint: a modeling approach -- A modeling approach to simulating medial collateral ligament deficiency of the elbow joint -- Muscle driven elbow joint simulation: a computational approach -- Conclusion
    URI
    https://hdl.handle.net/10355/60574
    Degree
    Ph.D.
    Thesis Department
    Engineering (UMKC)
     
    Mathematics (UMKC)
     
    Collections
    • 2017 UMKC Dissertations - Freely Available Online
    • Civil and Mechanical Engineering Electronic Theses and Dissertations (UMKC)
    • Mathematics and Statistics Electronic Theses and Dissertations (UMKC)

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems