Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2016 Dissertations (UMKC)
    • 2016 UMKC Dissertations - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2016 Dissertations (UMKC)
    • 2016 UMKC Dissertations - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Internet of Things (IoT) Applications With Diverse Direct Communication Methods

    Dhondge, Kaustubh
    View/Open
    [PDF] PDF (4.064Mb)
    Date
    2016
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Internet of Things (IoT) is a network of physical objects or things that are embedded with electronics, software, sensors, and network connectivity - which enable the object to collect and exchange data. Rapid proliferation of IoT is driving the intelligence in things used daily in homes, workplaces and industry. The IoT devices typically communicate via radio frequency (RF), such as WiFi and Bluetooth. In this dissertation we deeply analyze the various characteristics of different wireless communication methods in terms of range, energy-efficiency, and radiation pattern. We find that a well-established communication method might not be the most efficient, and other alternate communication methods with the desired properties for a particular application could exist. We exploit radically alternative, innovative, and complimentary wireless communication methods, including radio frequency, infrared (IR), and visible lights, through the IoT applications we have designed and built with those. We have developed various IoT applications which provide security and authentication, enable vehicular communications with smartphones or other smart devices, provide energy-efficient and accurate positioning to smart devices, and enable energy-efficient communications in Industrial Internet of Things (IIoT).
    Table of Contents
    Introduction -- Optical wireless authentication for SMART devices using an onboard ambient light sensor -- Smartphome based CAR2X-communication with wifi beacon stuffing for vulnerable road user safety -- Energy-efficient cooperative opportunistic positioning heterogeneous Smart devices -- Reducing and balancing energy consumption in Indistrial Internet of Things (IIoT) -- Optical wireless unlocking for Smart door locks using Smartphones -- Summary and future directions
    URI
    https://hdl.handle.net/10355/61363
    Degree
    Ph.D.
    Thesis Department
    Telecommunications and Computer Networking (UMKC)
     
    Computer Science (UMKC)
     
    Collections
    • 2016 UMKC Dissertations - Freely Available Online
    • Computer Science and Electrical Engineering Electronic Theses and Dissertations (UMKC)

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems