Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate Studies - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2009 Dissertations (MU)
    • 2009 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate Studies - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2009 Dissertations (MU)
    • 2009 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthorAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthorAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Investigations into the chemistry of protein tyrosine phosphatase redox regulation

    LaButti, Jason N., 1972-
    View/Open
    [PDF] public.pdf (1.961Kb)
    [PDF] short.pdf (20.50Kb)
    [PDF] research.pdf (15.42Mb)
    Date
    2009
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Transmission of complex intracellular signals, such as those for glucose uptake or proliferation, is often accomplished through the reversible phosphorylation of specific protein tyrosine residues. This reversible phosphorylation serves as a biochemical "rheostat" that alters a protein's functional properties and leads to propagation of the signal. The phosphorylation status of these tyrosine residues, thus transmission of the cellular signal itself, is tightly controlled by the opposing actions of protein tyrosine kinases that catalyze the addition of phosphoryl groups and protein tyrosine phosphatases (PTPs) are cysteine based enzymes that catalyze their removal. Abstraction of these phosphoryl groups, in many cases, serves as an "off switch" to terminate the cellular responses to the extracellular stimulus. PTPs, therefore, play a central role in the regulation of diverse cellular processes including glucose metabolism, cell cycle control and immune responses. Accordingly, small molecules capable of inactivating PTPs through reversible oxidation of their active site cysteine thiolate may find use as therapeutic agents and/or tools for the study of diverse signal transduction pathways. In the body of work presented here we report the chemical properties of a novel PTP redox regulator and develop new methodologies for studying PTP redox regulation.
    URI
    http://hdl.handle.net/10355/6158
    Degree
    Ph. D.
    Thesis Department
    Chemistry (MU)
    Part of
    2009 Freely available dissertations (MU)
    Collections
    • Chemistry electronic theses and dissertations (MU)
    • 2009 MU dissertations - Freely available online

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems