Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2017 Dissertations (UMKC)
    • 2017 UMKC Dissertations - Freely Available Online
    • View Item
    •   MOspace Home
    • University of Missouri-Kansas City
    • School of Graduate Studies (UMKC)
    • Theses and Dissertations (UMKC)
    • Dissertations (UMKC)
    • 2017 Dissertations (UMKC)
    • 2017 UMKC Dissertations - Freely Available Online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Application-Aware Network Design Using Software Defined Networking for Application Performance Optimization for Big Data and Video Streaming

    Zhao, Shuai
    View/Open
    [PDF] Application-Aware Network Design Using Software Defined Networking for Application Performance Optimization for Big Data and Video Streaming (7.664Mb)
    Date
    2017
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    This dissertation investigates improvement in application performance. For applications, we consider two classes: Hadoop MapReduce and video streaming. The Hadoop MapReduce (M/R) framework has become the de facto standard for Big Data analytics. However, the lack of network-awareness of the default MapReduce resource manager in a traditional IP network can cause unbalanced job scheduling and network bottlenecks; such factors can eventually lead to an increase in the Hadoop MapReduce job completion time. Dynamic Video streaming over the HTTP (MPEG-DASH) is becoming the defacto dominating transport for today’s video applications. It has been implemented in today’s major media carriers such as Youtube and Netflix. It enables new video applications to fully utilize the existing physical IP network infrastructure. For new 3D immersive medias such as Virtual Reality and 360-degree videos are drawing great attentions from both consumers and researchers in recent years. One of the biggest challenges in streaming such 3D media is the high band width demands and video quality. A new Tile-based video is introduced in both video codec and streaming layer to reduce the transferred media size. In this dissertation, we propose a Software-Defined Network (SDN) approach in an Application-Aware Network (AAN) platform. We first present an architecture for our approach and then show how this architecture can be applied to two aforementioned application areas. Our approach provides both underlying network functions and application level forwarding logics for Hadoop MapReduce and video streaming. By incorporating a comprehensive view of the network, the SDN controller can optimize MapReduce work loads and DASH flows for videos by application-aware traffic reroute. We quantify the improvement for both Hadoop and MPEG-DASH in terms of job completion time and user’s quality of experience (QoE), respectively. Based on our experiments, we observed that our AAN platform for Hadoop MapReduce job optimization offer a significant improvement compared to a static, traditional IP network environment by reducing job run time by 16% to 300% for various MapReduce benchmark jobs. As for MPEG-DASH based video streaming, we can increase user perceived video bitrate by 100%.
    Table of Contents
    Introduction -- Research survey -- Proposed architecture -- AAN-SDN for Hadoop -- Study of User QoE Improvement for Dynamic Adaptive Streaming over HTTP (MPEG-DASH) -- AAN-SDN For MPEG-DASH -- Conclusion -- Appendix A. Mininet Topology Source Code For DASH Setup -- Appendix B. Hadoop Installation Source Code -- Appendix C. Openvswitch Installation Source Code -- Appendix D. HiBench Installation Guide
    URI
    https://hdl.handle.net/10355/61850
    Degree
    Ph.D.
    Thesis Department
    Telecommunications and Computer Networking (UMKC)
     
    Computer Science (UMKC)
     
    Collections
    • 2017 UMKC Dissertations - Freely Available Online
    • Computer Science and Electrical Engineering Electronic Theses and Dissertations (UMKC)

    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    If you encounter harmful or offensive content or language on this site please email us at harmfulcontent@umkc.edu. To learn more read our Harmful Content in Library and Archives Collections Policy.

    Send Feedback
    hosted by University of Missouri Library Systems