Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2017 Dissertations (MU)
    • 2017 MU dissertations - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Dissertations (MU)
    • 2017 Dissertations (MU)
    • 2017 MU dissertations - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    Instability in a palladium hydride system due to a fast electrical perturbation caused by a pulsed power system

    Baker, Julian
    View/Open
    [PDF] public.pdf (2.164Kb)
    [PDF] research.pdf (7.872Mb)
    [PDF] short.pdf (37.26Kb)
    Date
    2017
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    Nanoporous palladium with a specific surface area of 29.12 m2g-1 was created using highly loaded palladium hydride wires subjected to a fast electrical pulse of energy. The delivered energy of approximately 0.5 J was insufficient to melt unloaded palladium wires, but in contrast, caused highly loaded palladium hydride wires to disintegrate. An element such as palladium, which was studied in these experiments, has the capacity to store hydrogen and deuterium to extremely high concentrations. Additionally, electrical explosion experiments of palladium hydride wires were performed on single samples at the loading ratios ranging from 0.5 up to 0.96, approaching the highest experimentally achieved loading ratio of 1. It was found that nanoporous palladium was created by the pulsing of palladium hydride wires at loading ratios higher than the threshold of 0.6. Each additional increase in the hydrogen loading ratio caused an accompanying increase in the surface area. In contrast, when the hydrogen loading ratio was below 0.6 the wire remained intact and there was no nanoporosity produced. Finally, a novel calorimetry technique was used to determine the relative amount of energy released from a wire during a fast, low energy pulse. Statistical analysis using Dunnett's T3 test with a significance level of 0.05 was performed on the experimental data, and showed a statistical difference between the means of the control (i.e. unloaded palladium wires) when compared to PdH0.72 and PdH0.9, and a statistical difference when comparing the control mean to PdD0.5 and PdD0.87.
    URI
    https://hdl.handle.net/10355/61899
    Degree
    Ph. D.
    Thesis Department
    Electrical and computer engineering (MU)
    Rights
    OpenAccess
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • Electrical Engineering and Computer Science electronic theses and dissertations (MU)
    • 2017 MU dissertations - Freely available online

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems