Shared more. Cited more. Safe forever.
    • advanced search
    • submit works
    • about
    • help
    • contact us
    • login
    View Item 
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2017 Theses (MU)
    • 2017 MU theses - Freely available online
    • View Item
    •   MOspace Home
    • University of Missouri-Columbia
    • Graduate School - Theses and Dissertations (MU)
    • Theses and Dissertations (MU)
    • Theses (MU)
    • 2017 Theses (MU)
    • 2017 MU theses - Freely available online
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    advanced searchsubmit worksabouthelpcontact us

    Browse

    All of MOspaceCommunities & CollectionsDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis SemesterThis CollectionDate IssuedAuthor/ContributorTitleSubjectIdentifierThesis DepartmentThesis AdvisorThesis Semester

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular AuthorsStatistics by Referrer

    A general method for sizing battery energy storage systems for use in mitigating photovoltaic flicker

    Wills, William Noah
    View/Open
    [PDF] research.pdf (594.5Kb)
    [PDF] public.pdf (5.260Kb)
    Date
    2017
    Format
    Thesis
    Metadata
    [+] Show full item record
    Abstract
    A method for sizing battery energy storage (BES) systems for use in mitigating voltage flicker caused by solar intermittency in photovoltaic generation was developed. The method creates a "design day" from existing solar data and designs the power and energy requirements for a BES system that can help a photovoltaic facility mitigate flicker caused by solar activity associated with the design day. An economic analysis of lead-acid and lithium-ion options for the BES was also developed. The method was then applied to a proposed photovoltaic project in the Midwestern United States.
    URI
    https://hdl.handle.net/10355/62372
    Degree
    M.S.
    Thesis Department
    Electrical and computer engineering (MU)
    Rights
    OpenAccess.
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
    Collections
    • 2017 MU theses - Freely available online
    • Electrical Engineering and Computer Science electronic theses and dissertations (MU)

    Send Feedback
    hosted by University of Missouri Library Systems
     

     


    Send Feedback
    hosted by University of Missouri Library Systems